Nuprl Lemma : m-strong-extensionality

[X:Type]. ∀d:metric(X). (mcomplete(X with d)  (∀Y:Type. ∀d':metric(Y). ∀f:FUN(X ⟶ Y).  is-msfun(X;d;Y;d';f)))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) is-msfun: is-msfun(X;d;Y;d';f) mfun: FUN(X ⟶ Y) mk-metric-space: with d metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q mfun: FUN(X ⟶ Y) sq_stable: SqStable(P) prop: is-msfun: is-msfun(X;d;Y;d';f) squash: T guard: {T} is-mfun: f:FUN(X;Y)
Lemmas referenced :  metric-strong-extensionality sq_stable__is-msfun meq_wf mfun_wf metric_wf mcomplete_wf mk-metric-space_wf istype-universe
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation_alt dependent_functionElimination independent_functionElimination setElimination rename because_Cache universeIsType inhabitedIsType sqequalRule imageMemberEquality baseClosed imageElimination instantiate universeEquality

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        (mcomplete(X  with  d)  {}\mRightarrow{}  (\mforall{}Y:Type.  \mforall{}d':metric(Y).  \mforall{}f:FUN(X  {}\mrightarrow{}  Y).    is-msfun(X;d;Y;d';f)))



Date html generated: 2019_10_30-AM-06_47_56
Last ObjectModification: 2019_10_02-AM-10_58_57

Theory : reals


Home Index