Nuprl Lemma : m-strong-extensionality
∀[X:Type]. ∀d:metric(X). (mcomplete(X with d) 
⇒ (∀Y:Type. ∀d':metric(Y). ∀f:FUN(X ⟶ Y).  is-msfun(X;d;Y;d';f)))
Proof
Definitions occuring in Statement : 
mcomplete: mcomplete(M)
, 
is-msfun: is-msfun(X;d;Y;d';f)
, 
mfun: FUN(X ⟶ Y)
, 
mk-metric-space: X with d
, 
metric: metric(X)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
mfun: FUN(X ⟶ Y)
, 
sq_stable: SqStable(P)
, 
prop: ℙ
, 
is-msfun: is-msfun(X;d;Y;d';f)
, 
squash: ↓T
, 
guard: {T}
, 
is-mfun: f:FUN(X;Y)
Lemmas referenced : 
metric-strong-extensionality, 
sq_stable__is-msfun, 
meq_wf, 
mfun_wf, 
metric_wf, 
mcomplete_wf, 
mk-metric-space_wf, 
istype-universe
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
universeIsType, 
inhabitedIsType, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
instantiate, 
universeEquality
Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X)
        (mcomplete(X  with  d)  {}\mRightarrow{}  (\mforall{}Y:Type.  \mforall{}d':metric(Y).  \mforall{}f:FUN(X  {}\mrightarrow{}  Y).    is-msfun(X;d;Y;d';f)))
Date html generated:
2019_10_30-AM-06_47_56
Last ObjectModification:
2019_10_02-AM-10_58_57
Theory : reals
Home
Index