Step
*
1
1
of Lemma
m-unique-limit
1. X : Type
2. d : metric(X)
3. x : ℕ ⟶ X
4. y1 : X
5. y2 : X
6. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];y2) ≤ (r1/r(k)))))])
7. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];y1) ≤ (r1/r(k)))))])
8. k : ℕ+
9. N : ℕ
10. [%7] : ∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];y2) ≤ (r1/r(2 * k))))
11. N1 : ℕ
12. [%9] : ∀n:ℕ. ((N1 ≤ n)
⇒ (mdist(d;x[n];y1) ≤ (r1/r(2 * k))))
13. mdist(d;x[imax(N;N1)];y2) ≤ (r1/r(2 * k))
14. mdist(d;x[imax(N;N1)];y1) ≤ (r1/r(2 * k))
⊢ |(d y1 y2) - r0| ≤ (r1/r(k))
BY
{ ((Assert mdist(d;y1;y2) ≤ (mdist(d;y1;x[imax(N;N1)]) + mdist(d;x[imax(N;N1)];y2)) BY
((RWO "mdist-triangle-inequality<" 0 THENA Auto) THEN nRNorm 0 THEN Auto))
THEN Fold `mdist` 0
THEN nRNorm 0
THEN Auto
THEN (RWO "rabs-of-nonneg" 0 THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN (RWO "-3" 0 THENA Auto)
THEN (RWO "mdist-symm" 0 THENA Auto)
THEN (RWO "-2" 0 THENA Auto)) }
1
1. X : Type
2. d : metric(X)
3. x : ℕ ⟶ X
4. y1 : X
5. y2 : X
6. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];y2) ≤ (r1/r(k)))))])
7. ∀k:ℕ+. (∃N:ℕ [(∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];y1) ≤ (r1/r(k)))))])
8. k : ℕ+
9. N : ℕ
10. ∀n:ℕ. ((N ≤ n)
⇒ (mdist(d;x[n];y2) ≤ (r1/r(2 * k))))
11. N1 : ℕ
12. ∀n:ℕ. ((N1 ≤ n)
⇒ (mdist(d;x[n];y1) ≤ (r1/r(2 * k))))
13. mdist(d;x[imax(N;N1)];y2) ≤ (r1/r(2 * k))
14. mdist(d;x[imax(N;N1)];y1) ≤ (r1/r(2 * k))
15. mdist(d;y1;y2) ≤ (mdist(d;y1;x[imax(N;N1)]) + mdist(d;x[imax(N;N1)];y2))
⊢ ((r1/r(2 * k)) + (r1/r(2 * k))) ≤ (r1/r(k))
Latex:
Latex:
1. X : Type
2. d : metric(X)
3. x : \mBbbN{} {}\mrightarrow{} X
4. y1 : X
5. y2 : X
6. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (mdist(d;x[n];y2) \mleq{} (r1/r(k)))))])
7. \mforall{}k:\mBbbN{}\msupplus{}. (\mexists{}N:\mBbbN{} [(\mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (mdist(d;x[n];y1) \mleq{} (r1/r(k)))))])
8. k : \mBbbN{}\msupplus{}
9. N : \mBbbN{}
10. [\%7] : \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (mdist(d;x[n];y2) \mleq{} (r1/r(2 * k))))
11. N1 : \mBbbN{}
12. [\%9] : \mforall{}n:\mBbbN{}. ((N1 \mleq{} n) {}\mRightarrow{} (mdist(d;x[n];y1) \mleq{} (r1/r(2 * k))))
13. mdist(d;x[imax(N;N1)];y2) \mleq{} (r1/r(2 * k))
14. mdist(d;x[imax(N;N1)];y1) \mleq{} (r1/r(2 * k))
\mvdash{} |(d y1 y2) - r0| \mleq{} (r1/r(k))
By
Latex:
((Assert mdist(d;y1;y2) \mleq{} (mdist(d;y1;x[imax(N;N1)]) + mdist(d;x[imax(N;N1)];y2)) BY
((RWO "mdist-triangle-inequality<" 0 THENA Auto) THEN nRNorm 0 THEN Auto))
THEN Fold `mdist` 0
THEN nRNorm 0
THEN Auto
THEN (RWO "rabs-of-nonneg" 0 THENA Auto)
THEN (RWO "-1" 0 THENA Auto)
THEN (RWO "-3" 0 THENA Auto)
THEN (RWO "mdist-symm" 0 THENA Auto)
THEN (RWO "-2" 0 THENA Auto))
Home
Index