Nuprl Lemma : metric-weak-Markov

[X:Type]. ∀d:metric(X). (mcomplete(X with d)  (∀x,y:X.  ((∀z:X. ((¬z ≡ x) ∨ z ≡ y)))  y)))


Proof




Definitions occuring in Statement :  mcomplete: mcomplete(M) mk-metric-space: with d msep: y meq: x ≡ y metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q not: ¬A member: t ∈ T prop: false: False nat_plus: + uimplies: supposing a rneq: x ≠ y guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] rless: x < y sq_exists: x:A [B[x]] int_seg: {i..j-} lelt: i ≤ j < k top: Top cand: c∧ B sq_type: SQType(T) true: True subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] nat: ge: i ≥  so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: less_than: a < b squash: T upto: upto(n) from-upto: [n, m) lt_int: i <j ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit uiff: uiff(P;Q) bnot: ¬bb assert: b mcomplete: mcomplete(M) mk-metric-space: with d mcauchy: mcauchy(d;n.x[n]) eq_int: (i =z j) rev_uimplies: rev_uimplies(P;Q) real: sq_stable: SqStable(P) rge: x ≥ y subtract: m mconverges: x[n]↓ as n→∞ mconverges-to: lim n→∞.x[n] y nequal: a ≠ b ∈  meq: x ≡ y mdist: mdist(d;x;y) req_int_terms: t1 ≡ t2 msep: y

Latex:
\mforall{}[X:Type]
    \mforall{}d:metric(X).  (mcomplete(X  with  d)  {}\mRightarrow{}  (\mforall{}x,y:X.    ((\mforall{}z:X.  ((\mneg{}z  \mequiv{}  x)  \mvee{}  (\mneg{}z  \mequiv{}  y)))  {}\mRightarrow{}  x  \#  y)))



Date html generated: 2020_05_20-AM-11_58_40
Last ObjectModification: 2020_01_03-PM-09_15_57

Theory : reals


Home Index