Nuprl Lemma : monotone-maps-compact
∀I,J:Interval. ∀f:I ⟶ℝ.
  (((∀x,y:{t:ℝ| t ∈ I} .  ((x ≤ y) 
⇒ (f[x] ≤ f[y]))) ∨ (∀x,y:{t:ℝ| t ∈ I} .  ((x ≤ y) 
⇒ (f[y] ≤ f[x]))))
  
⇒ (∀x:{t:ℝ| t ∈ I} . (f[x] ∈ J))
  
⇒ maps-compact(I;J;x.f[x]))
Proof
Definitions occuring in Statement : 
maps-compact: maps-compact(I;J;x.f[x])
, 
rfun: I ⟶ℝ
, 
i-member: r ∈ I
, 
interval: Interval
, 
rleq: x ≤ y
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
set: {x:A| B[x]} 
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
maps-compact: maps-compact(I;J;x.f[x])
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
nat_plus: ℕ+
, 
prop: ℙ
, 
uimplies: b supposing a
, 
subinterval: I ⊆ J 
, 
and: P ∧ Q
, 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
exists: ∃x:A. B[x]
, 
icompact: icompact(I)
, 
i-nonvoid: i-nonvoid(I)
, 
cand: A c∧ B
, 
so_lambda: λ2x.t[x]
, 
iff: P 
⇐⇒ Q
, 
guard: {T}
, 
or: P ∨ Q
, 
rbetween: x≤y≤z
Lemmas referenced : 
sq_stable__icompact, 
i-approx_wf, 
icompact-is-rccint, 
less_than_wf, 
i-approx-is-subinterval, 
right-endpoint_wf, 
i-approx-finite, 
icompact-endpoints, 
left-endpoint_wf, 
i-member_wf, 
i-approx-containing2, 
i-approx-closed, 
set_wf, 
nat_plus_wf, 
icompact_wf, 
all_wf, 
real_wf, 
or_wf, 
rleq_wf, 
rfun_wf, 
interval_wf, 
sq_stable__i-member, 
i-member-compact, 
rbetween_wf, 
i-member-between
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
setElimination, 
thin, 
rename, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_isectElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
applyEquality, 
dependent_pairFormation, 
lambdaEquality, 
setEquality, 
functionEquality, 
addLevel, 
levelHypothesis, 
unionElimination, 
inlFormation, 
promote_hyp, 
inrFormation
Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  \mleq{}  y)  {}\mRightarrow{}  (f[x]  \mleq{}  f[y])))
      \mvee{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  \mleq{}  y)  {}\mRightarrow{}  (f[y]  \mleq{}  f[x]))))
    {}\mRightarrow{}  (\mforall{}x:\{t:\mBbbR{}|  t  \mmember{}  I\}  .  (f[x]  \mmember{}  J))
    {}\mRightarrow{}  maps-compact(I;J;x.f[x]))
Date html generated:
2016_10_26-AM-09_59_45
Last ObjectModification:
2016_08_27-AM-11_33_16
Theory : reals
Home
Index