Nuprl Lemma : monotone-maps-compact

I,J:Interval. ∀f:I ⟶ℝ.
  (((∀x,y:{t:ℝt ∈ I} .  ((x ≤ y)  (f[x] ≤ f[y]))) ∨ (∀x,y:{t:ℝt ∈ I} .  ((x ≤ y)  (f[y] ≤ f[x]))))
   (∀x:{t:ℝt ∈ I} (f[x] ∈ J))
   maps-compact(I;J;x.f[x]))


Proof




Definitions occuring in Statement :  maps-compact: maps-compact(I;J;x.f[x]) rfun: I ⟶ℝ i-member: r ∈ I interval: Interval rleq: x ≤ y real: so_apply: x[s] all: x:A. B[x] implies:  Q or: P ∨ Q set: {x:A| B[x]} 
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q maps-compact: maps-compact(I;J;x.f[x]) member: t ∈ T uall: [x:A]. B[x] sq_stable: SqStable(P) squash: T nat_plus: + prop: uimplies: supposing a subinterval: I ⊆  and: P ∧ Q so_apply: x[s] rfun: I ⟶ℝ exists: x:A. B[x] icompact: icompact(I) i-nonvoid: i-nonvoid(I) cand: c∧ B so_lambda: λ2x.t[x] iff: ⇐⇒ Q guard: {T} or: P ∨ Q rbetween: x≤y≤z
Lemmas referenced :  sq_stable__icompact i-approx_wf icompact-is-rccint less_than_wf i-approx-is-subinterval right-endpoint_wf i-approx-finite icompact-endpoints left-endpoint_wf i-member_wf i-approx-containing2 i-approx-closed set_wf nat_plus_wf icompact_wf all_wf real_wf or_wf rleq_wf rfun_wf interval_wf sq_stable__i-member i-member-compact rbetween_wf i-member-between
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut setElimination thin rename introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination isectElimination hypothesisEquality hypothesis independent_functionElimination sqequalRule imageMemberEquality baseClosed imageElimination dependent_set_memberEquality natural_numberEquality independent_isectElimination because_Cache productElimination independent_pairFormation applyEquality dependent_pairFormation lambdaEquality setEquality functionEquality addLevel levelHypothesis unionElimination inlFormation promote_hyp inrFormation

Latex:
\mforall{}I,J:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.
    (((\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  \mleq{}  y)  {}\mRightarrow{}  (f[x]  \mleq{}  f[y])))
      \mvee{}  (\mforall{}x,y:\{t:\mBbbR{}|  t  \mmember{}  I\}  .    ((x  \mleq{}  y)  {}\mRightarrow{}  (f[y]  \mleq{}  f[x]))))
    {}\mRightarrow{}  (\mforall{}x:\{t:\mBbbR{}|  t  \mmember{}  I\}  .  (f[x]  \mmember{}  J))
    {}\mRightarrow{}  maps-compact(I;J;x.f[x]))



Date html generated: 2016_10_26-AM-09_59_45
Last ObjectModification: 2016_08_27-AM-11_33_16

Theory : reals


Home Index