Nuprl Lemma : msep-or

[X:Type]. ∀d:metric(X). ∀x,y:X.  (x  (∀z:X. (x z ∨ y)))


Proof




Definitions occuring in Statement :  msep: y metric: metric(X) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T msep: y guard: {T} uimplies: supposing a prop:
Lemmas referenced :  mdist-triangle-inequality rless_transitivity1 int-to-real_wf mdist_wf radd_wf msep_wf metric_wf istype-universe radd-positive-implies
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis dependent_functionElimination natural_numberEquality independent_functionElimination independent_isectElimination inhabitedIsType universeIsType instantiate universeEquality

Latex:
\mforall{}[X:Type].  \mforall{}d:metric(X).  \mforall{}x,y:X.    (x  \#  y  {}\mRightarrow{}  (\mforall{}z:X.  (x  \#  z  \mvee{}  z  \#  y)))



Date html generated: 2019_10_29-AM-11_01_44
Last ObjectModification: 2019_10_02-AM-09_42_52

Theory : reals


Home Index