Nuprl Lemma : nonzero-on-implies
∀I:Interval. ∀f:I ⟶ℝ.  (f[x]≠r0 for x ∈ I ⇒ (∀x:ℝ. ((x ∈ I) ⇒ f[x] ≠ r0)))
Proof
Definitions occuring in Statement : 
nonzero-on: f[x]≠r0 for x ∈ I, 
rfun: I ⟶ℝ, 
i-member: r ∈ I, 
interval: Interval, 
rneq: x ≠ y, 
int-to-real: r(n), 
real: ℝ, 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
label: ...$L... t, 
rfun: I ⟶ℝ, 
so_apply: x[s], 
nonzero-on: f[x]≠r0 for x ∈ I, 
icompact: icompact(I), 
and: P ∧ Q, 
cand: A c∧ B, 
i-nonvoid: i-nonvoid(I), 
sq_exists: ∃x:{A| B[x]}, 
sq_stable: SqStable(P), 
guard: {T}, 
uimplies: b supposing a, 
squash: ↓T, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
rabs-positive-iff, 
rless_transitivity1, 
rabs_wf, 
int-to-real_wf, 
sq_stable__rless, 
i-approx-finite, 
i-approx-closed, 
i-approx_wf, 
icompact_wf, 
interval_wf, 
rfun_wf, 
nonzero-on_wf, 
real_wf, 
i-member_wf, 
i-member-witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
because_Cache, 
dependent_pairFormation, 
setElimination, 
rename, 
natural_numberEquality, 
introduction, 
independent_isectElimination, 
imageMemberEquality, 
baseClosed, 
imageElimination
Latex:
\mforall{}I:Interval.  \mforall{}f:I  {}\mrightarrow{}\mBbbR{}.    (f[x]\mneq{}r0  for  x  \mmember{}  I  {}\mRightarrow{}  (\mforall{}x:\mBbbR{}.  ((x  \mmember{}  I)  {}\mRightarrow{}  f[x]  \mneq{}  r0)))
Date html generated:
2016_05_18-AM-09_19_14
Last ObjectModification:
2016_01_17-AM-02_40_45
Theory : reals
Home
Index