Nuprl Lemma : rabs-positive-iff

x:ℝ(x ≠ r0 ⇐⇒ r0 < |x|)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rless: x < y rabs: |x| int-to-real: r(n) real: all: x:A. B[x] iff: ⇐⇒ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] implies:  Q prop: rev_implies:  Q uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q)
Lemmas referenced :  rneq-iff-rabs int-to-real_wf rneq_wf iff_wf rless_wf rabs_wf rsub_wf real_wf rmul_wf rless_functionality req_weakening rabs_functionality req_transitivity real_term_polynomial itermSubtract_wf itermVar_wf itermConstant_wf itermMultiply_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_mul_lemma req-iff-rsub-is-0 rmul-identity1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut addLevel sqequalHypSubstitution productElimination thin independent_pairFormation impliesFunctionality introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination natural_numberEquality hypothesis independent_functionElimination because_Cache independent_isectElimination sqequalRule computeAll lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}x:\mBbbR{}.  (x  \mneq{}  r0  \mLeftarrow{}{}\mRightarrow{}  r0  <  |x|)



Date html generated: 2017_10_03-AM-08_31_26
Last ObjectModification: 2017_07_28-AM-07_27_04

Theory : reals


Home Index