Nuprl Lemma : old-proof-of-real-continuity

a,b:ℝ.  ∀f:[a, b] ⟶ℝreal-cont(f;a;b) supposing real-fun(f;a;b) supposing a ≤ b


Proof




Definitions occuring in Statement :  real-cont: real-cont(f;a;b) real-fun: real-fun(f;a;b) rfun: I ⟶ℝ rccint: [l, u] rleq: x ≤ y real: uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T rleq: x ≤ y rnonneg: rnonneg(x) uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q real-fun: real-fun(f;a;b) implies:  Q rfun: I ⟶ℝ prop: real-cont: real-cont(f;a;b) so_lambda: λ2y.t[x; y] subtype_rel: A ⊆B nat: so_apply: x[s1;s2] i-member: r ∈ I rccint: [l, u] real: nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False real-sfun: real-sfun(f;a;b) sq_stable: SqStable(P) cand: c∧ B squash: T rneq: x ≠ y guard: {T} rless: x < y sq_exists: x:A [B[x]] so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) iff: ⇐⇒ Q rev_implies:  Q ge: i ≥  uiff: uiff(P;Q) req_int_terms: t1 ≡ t2 int_nzero: -o true: True nequal: a ≠ b ∈  less_than: a < b less_than': less_than'(a;b) rdiv: (x/y) rev_uimplies: rev_uimplies(P;Q) rational-approx: (x within 1/n) rge: x ≥ y bool: 𝔹 unit: Unit it: btrue: tt bfalse: ff bnot: ¬bb ifthenelse: if then else fi  assert: b

Latex:
\mforall{}a,b:\mBbbR{}.    \mforall{}f:[a,  b]  {}\mrightarrow{}\mBbbR{}.  real-cont(f;a;b)  supposing  real-fun(f;a;b)  supposing  a  \mleq{}  b



Date html generated: 2020_05_20-PM-00_09_51
Last ObjectModification: 2019_12_14-PM-03_09_41

Theory : reals


Home Index