Nuprl Lemma : r-archimedean-rabs

x:ℝ. ∃n:ℕ(|x| ≤ r(n))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| int-to-real: r(n) real: nat: all: x:A. B[x] exists: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] top: Top nat: uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a cand: c∧ B prop: iff: ⇐⇒ Q rev_implies:  Q implies:  Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A true: True squash: T req_int_terms: t1 ≡ t2
Lemmas referenced :  r-archimedean rabs-as-rmax rmax_lb rminus_wf int-to-real_wf rleq_wf rabs_wf real_wf rmul_reverses_rleq rleq-int false_wf rmul_wf itermSubtract_wf itermMultiply_wf itermVar_wf itermConstant_wf itermMinus_wf req-iff-rsub-is-0 rminus-rminus rleq_functionality req_transitivity req_weakening squash_wf true_wf rminus-int real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma real_term_value_minus_lemma
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation hypothesis sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality productElimination dependent_pairFormation sqequalRule isectElimination isect_memberEquality voidElimination voidEquality setElimination rename independent_isectElimination independent_pairFormation minusEquality natural_numberEquality independent_functionElimination promote_hyp because_Cache applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed approximateComputation int_eqEquality intEquality

Latex:
\mforall{}x:\mBbbR{}.  \mexists{}n:\mBbbN{}.  (|x|  \mleq{}  r(n))



Date html generated: 2017_10_03-AM-09_22_41
Last ObjectModification: 2017_07_28-AM-07_45_56

Theory : reals


Home Index