Step
*
2
1
1
1
of Lemma
ratio-test-corollary
1. x : ℕ ⟶ ℝ@i
2. ∀N:ℕ
((∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . ((∀n:{N...}. (|x[n + 1]| ≤ (c * |x[n]|)))
⇒ Σn.x[n]↓))
∧ (∀c:{c:ℝ| r1 < c} . ((∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|))
⇒ Σn.x[n]↑)))
3. ∀n:ℕ. x[n] ≠ r0
4. L : ℝ@i
5. (L < r1)
⇒ Σn.x[n]↓
6. r1 < L
7. k : ℕ+
8. (r1/r(k)) < (L - r1)
9. r1 < (L - (r1/r(k)))
10. N : ℕ@i
11. ∀n:ℕ. ((N ≤ n)
⇒ (||(x[n + 1]/x[n])| - L| ≤ (r1/r(k + 1))))
12. ∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . ((∀n:{N...}. (|x[n + 1]| ≤ (c * |x[n]|)))
⇒ Σn.x[n]↓)
13. ∀c:{c:ℝ| r1 < c} . ((∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|))
⇒ Σn.x[n]↑)
14. n : {N...}@i
⊢ ((L - (r1/r(k))) * |x[n]|) < |x[n + 1]|
BY
{ ((InstHyp [⌜n⌝] (-4)⋅ THENA Auto)
THEN (Assert r0 < |x[n]| BY
((Assert x[n] ≠ r0 BY Auto) THEN Lemmaize [-1] THEN EAuto 2))
THEN (RWO "rabs-rdiv" (-2) THENA Auto)
THEN (RWO "rabs-difference-bound-rleq" (-2) THENA Auto)) }
1
1. x : ℕ ⟶ ℝ@i
2. ∀N:ℕ
((∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . ((∀n:{N...}. (|x[n + 1]| ≤ (c * |x[n]|)))
⇒ Σn.x[n]↓))
∧ (∀c:{c:ℝ| r1 < c} . ((∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|))
⇒ Σn.x[n]↑)))
3. ∀n:ℕ. x[n] ≠ r0
4. L : ℝ@i
5. (L < r1)
⇒ Σn.x[n]↓
6. r1 < L
7. k : ℕ+
8. (r1/r(k)) < (L - r1)
9. r1 < (L - (r1/r(k)))
10. N : ℕ@i
11. ∀n:ℕ. ((N ≤ n)
⇒ (||(x[n + 1]/x[n])| - L| ≤ (r1/r(k + 1))))
12. ∀c:{c:ℝ| (r0 ≤ c) ∧ (c < r1)} . ((∀n:{N...}. (|x[n + 1]| ≤ (c * |x[n]|)))
⇒ Σn.x[n]↓)
13. ∀c:{c:ℝ| r1 < c} . ((∀n:{N...}. ((c * |x[n]|) < |x[n + 1]|))
⇒ Σn.x[n]↑)
14. n : {N...}@i
15. ((L - (r1/r(k + 1))) ≤ (|x[n + 1]|/|x[n]|)) ∧ ((|x[n + 1]|/|x[n]|) ≤ (L + (r1/r(k + 1))))
16. r0 < |x[n]|
⊢ ((L - (r1/r(k))) * |x[n]|) < |x[n + 1]|
Latex:
Latex:
1. x : \mBbbN{} {}\mrightarrow{} \mBbbR{}@i
2. \mforall{}N:\mBbbN{}
((\mforall{}c:\{c:\mBbbR{}| (r0 \mleq{} c) \mwedge{} (c < r1)\} . ((\mforall{}n:\{N...\}. (|x[n + 1]| \mleq{} (c * |x[n]|))) {}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{}))
\mwedge{} (\mforall{}c:\{c:\mBbbR{}| r1 < c\} . ((\mforall{}n:\{N...\}. ((c * |x[n]|) < |x[n + 1]|)) {}\mRightarrow{} \mSigma{}n.x[n]\muparrow{})))
3. \mforall{}n:\mBbbN{}. x[n] \mneq{} r0
4. L : \mBbbR{}@i
5. (L < r1) {}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{}
6. r1 < L
7. k : \mBbbN{}\msupplus{}
8. (r1/r(k)) < (L - r1)
9. r1 < (L - (r1/r(k)))
10. N : \mBbbN{}@i
11. \mforall{}n:\mBbbN{}. ((N \mleq{} n) {}\mRightarrow{} (||(x[n + 1]/x[n])| - L| \mleq{} (r1/r(k + 1))))
12. \mforall{}c:\{c:\mBbbR{}| (r0 \mleq{} c) \mwedge{} (c < r1)\} . ((\mforall{}n:\{N...\}. (|x[n + 1]| \mleq{} (c * |x[n]|))) {}\mRightarrow{} \mSigma{}n.x[n]\mdownarrow{})
13. \mforall{}c:\{c:\mBbbR{}| r1 < c\} . ((\mforall{}n:\{N...\}. ((c * |x[n]|) < |x[n + 1]|)) {}\mRightarrow{} \mSigma{}n.x[n]\muparrow{})
14. n : \{N...\}@i
\mvdash{} ((L - (r1/r(k))) * |x[n]|) < |x[n + 1]|
By
Latex:
((InstHyp [\mkleeneopen{}n\mkleeneclose{}] (-4)\mcdot{} THENA Auto)
THEN (Assert r0 < |x[n]| BY
((Assert x[n] \mneq{} r0 BY Auto) THEN Lemmaize [-1] THEN EAuto 2))
THEN (RWO "rabs-rdiv" (-2) THENA Auto)
THEN (RWO "rabs-difference-bound-rleq" (-2) THENA Auto))
Home
Index