Step * 1 of Lemma rational-IVT


1. : ℝ
2. : ℝ
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] {x:ℝx ∈ [a, b]}  ⟶ ℝ
5. [%] (a < b)
∧ ((g[a] g[b]) < r0)
∧ (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [a, b])  (g[ratreal(r)] ratreal(f[r]))))
⊢ ∃c:{c:ℝc ∈ (a, b)}  [(g[c] r0)]
BY
Assert ⌜∃ra,rb:ℤ × ℕ+
           ((a ≤ ratreal(ra)) ∧ (ratreal(ra) ≤ ratreal(rb)) ∧ (ratreal(rb) ≤ b) ∧ (ratreal(ratmul(f[ra];f[rb])) < r0))⌝
⋅ }

1
.....assertion..... 
1. : ℝ
2. : ℝ
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] {x:ℝx ∈ [a, b]}  ⟶ ℝ
5. [%] (a < b)
∧ ((g[a] g[b]) < r0)
∧ (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [a, b])  (g[ratreal(r)] ratreal(f[r]))))
⊢ ∃ra,rb:ℤ × ℕ+
   ((a ≤ ratreal(ra)) ∧ (ratreal(ra) ≤ ratreal(rb)) ∧ (ratreal(rb) ≤ b) ∧ (ratreal(ratmul(f[ra];f[rb])) < r0))

2
1. : ℝ
2. : ℝ
3. (ℤ × ℕ+) ⟶ (ℤ × ℕ+)
4. [g] {x:ℝx ∈ [a, b]}  ⟶ ℝ
5. [%] (a < b)
∧ ((g[a] g[b]) < r0)
∧ (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g[x] g[y])))
∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [a, b])  (g[ratreal(r)] ratreal(f[r]))))
6. ∃ra,rb:ℤ × ℕ+
    ((a ≤ ratreal(ra)) ∧ (ratreal(ra) ≤ ratreal(rb)) ∧ (ratreal(rb) ≤ b) ∧ (ratreal(ratmul(f[ra];f[rb])) < r0))
⊢ ∃c:{c:ℝc ∈ (a, b)}  [(g[c] r0)]


Latex:


Latex:

1.  a  :  \mBbbR{}
2.  b  :  \mBbbR{}
3.  f  :  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})
4.  [g]  :  \{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    {}\mrightarrow{}  \mBbbR{}
5.  [\%]  :  (a  <  b)
\mwedge{}  ((g[a]  *  g[b])  <  r0)
\mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
\mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [a,  b])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))
\mvdash{}  \mexists{}c:\{c:\mBbbR{}|  c  \mmember{}  (a,  b)\}    [(g[c]  =  r0)]


By


Latex:
Assert  \mkleeneopen{}\mexists{}ra,rb:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}
                  ((a  \mleq{}  ratreal(ra))
                  \mwedge{}  (ratreal(ra)  \mleq{}  ratreal(rb))
                  \mwedge{}  (ratreal(rb)  \mleq{}  b)
                  \mwedge{}  (ratreal(ratmul(f[ra];f[rb]))  <  r0))\mkleeneclose{}\mcdot{}




Home Index