Nuprl Lemma : rational-IVT

a,b:ℝ. ∀f:(ℤ × ℕ+) ⟶ (ℤ × ℕ+).
  ∀[g:{x:ℝx ∈ [a, b]}  ⟶ ℝ]
    ∃c:{c:ℝc ∈ (a, b)}  [(g[c] r0)] 
    supposing (a < b)
    ∧ ((g[a] g[b]) < r0)
    ∧ (∀x,y:{x:ℝx ∈ [a, b]} .  ((x y)  (g[x] g[y])))
    ∧ (∀r:ℤ × ℕ+((ratreal(r) ∈ [a, b])  (g[ratreal(r)] ratreal(f[r]))))


Proof




Definitions occuring in Statement :  ratreal: ratreal(r) rooint: (l, u) rccint: [l, u] i-member: r ∈ I rless: x < y req: y rmul: b int-to-real: r(n) real: nat_plus: + uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] product: x:A × B[x] natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] uall: [x:A]. B[x] uimplies: supposing a and: P ∧ Q member: t ∈ T prop: so_apply: x[s] top: Top cand: c∧ B guard: {T} implies:  Q real: nat_plus: + decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False rless: x < y sq_exists: x:A [B[x]] rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q rational-upper-approx: above within 1/n has-value: (a)↓ int_nzero: -o nequal: a ≠ b ∈  subtype_rel: A ⊆B uiff: uiff(P;Q) rational-lower-approx: (below within 1/n) rev_uimplies: rev_uimplies(P;Q) squash: T req_int_terms: t1 ≡ t2 int_upper: {i...} sq_stable: SqStable(P) rge: x ≥ y rdiv: (x/y) rgt: x > y le: A ≤ B less_than: a < b less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] sq_type: SQType(T) pi1: fst(t) bfalse: ff band: p ∧b q ifthenelse: if then else fi  rleq: x ≤ y rnonneg: rnonneg(x) i-member: r ∈ I rccint: [l, u]
Lemmas referenced :  rless_wf rmul_wf member_rccint_lemma istype-void rleq_weakening_equal rleq_weakening_rless rleq_wf int-to-real_wf i-member_wf rccint_wf req_wf istype-int nat_plus_wf ratreal_wf real_wf nat_plus_properties decidable__lt full-omega-unsat intformand_wf intformnot_wf intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_wf istype-less_than rdiv_wf mul_nat_plus rless-int rational-upper-approx_wf value-type-has-value int-value-type int-rdiv_wf intformeq_wf int_formula_prop_eq_lemma int_subtype_base nequal_wf req_weakening req-int decidable__equal_int subtract_wf rational-lower-approx_wf req_functionality ratreal-req int-rdiv-req rdiv_functionality rless-implies-rless rminus_wf rmul-is-positive rsub_wf itermSubtract_wf itermMinus_wf req-iff-rsub-is-0 real_polynomial_null real_term_value_sub_lemma real_term_value_const_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_minus_lemma function-values-near-same-sign rccint-icompact rabs-positive-iff small-reciprocal-real imax_wf imax_nat_plus multiply_nat_plus imax_ub sq_stable__less_than decidable__le intformle_wf int_formula_prop_le_lemma istype-le rational-upper-approx-property int_upper_properties rational-lower-approx-property rleq-int-fractions rless_transitivity2 radd_wf radd-preserves-rleq rinv_wf2 itermAdd_wf rleq_functionality_wrt_implies rleq_functionality rleq-implies-rleq real_term_value_add_lemma rleq_transitivity rabs-difference-bound-rleq sq_stable__rless trivial-rsub-rleq rsub_functionality_wrt_rleq req_transitivity rinv-as-rdiv rminus_functionality rmul_reverses_rleq_iff trivial-rleq-radd rmul-negative-iff subtype_rel_sets_simple less_than_wf le_wf istype-assert le_int_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf lt_int_wf ratmul_wf bfalse_wf assert_wf assert_of_le_int iff_transitivity iff_weakening_uiff assert_of_band assert_of_lt_int mul_cancel_in_le multiply-is-int-iff subtract-is-int-iff add-is-int-iff int_term_value_add_lemma int_term_value_subtract_lemma false_wf req_inversion ratreal-negative rless_functionality ratreal-ratmul i-member_functionality rmul_functionality mu-ge_wf istype-int_upper istype-false not-lt-2 add_functionality_wrt_le add-commutes zero-add le-add-cancel sq_stable__and sq_stable__le le_witness_for_triv mu-ge-property set_subtype_base pi1_wf_top subtype_rel_product top_wf rless-int-fractions3 set-value-type equal_wf mul_preserves_le nat_plus_subtype_nat rmul-is-negative rat-zero-cases sq_stable__rleq rless_transitivity1 rless_irreflexivity rmul_reverses_rleq rational-fun-zero_wf subtype_rel_dep_function member_rooint_lemma sq_stable__req rleq_weakening rabs_wf rabs-of-nonpos rleq-iff-not-rless trivial-rless-radd rless_functionality_wrt_implies rabs-of-nonneg radd-preserves-rless int-rat-mul_wf int-rmul_wf ratreal-int-rat-mul int-rmul-req subtype_rel_self rminus-as-rmul radd-preserves-req
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt sqequalRule productIsType universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality dependent_functionElimination isect_memberEquality_alt voidElimination because_Cache independent_isectElimination independent_pairFormation dependent_set_memberEquality_alt natural_numberEquality functionIsType setIsType inhabitedIsType setElimination rename independent_pairEquality addEquality multiplyEquality productElimination unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality closedConclusion inrFormation_alt callbyvalueReduce intEquality equalityIstype baseApply baseClosed sqequalBase equalitySymmetry imageElimination imageMemberEquality inlFormation_alt equalityTransitivity applyLambdaEquality minusEquality promote_hyp instantiate cumulativity productEquality pointwiseFunctionality functionIsTypeImplies cutEval setEquality dependent_set_memberFormation_alt

Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}f:(\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{})  {}\mrightarrow{}  (\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}).
    \mforall{}[g:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}    {}\mrightarrow{}  \mBbbR{}]
        \mexists{}c:\{c:\mBbbR{}|  c  \mmember{}  (a,  b)\}    [(g[c]  =  r0)] 
        supposing  (a  <  b)
        \mwedge{}  ((g[a]  *  g[b])  <  r0)
        \mwedge{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  [a,  b]\}  .    ((x  =  y)  {}\mRightarrow{}  (g[x]  =  g[y])))
        \mwedge{}  (\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  ((ratreal(r)  \mmember{}  [a,  b])  {}\mRightarrow{}  (g[ratreal(r)]  =  ratreal(f[r]))))



Date html generated: 2019_10_30-AM-10_04_01
Last ObjectModification: 2019_01_14-PM-00_29_17

Theory : reals


Home Index