Nuprl Lemma : function-values-near-same-sign
∀I:Interval. ∀f:{x:ℝ| x ∈ I}  ⟶ ℝ.
  (icompact(I)
  
⇒ (∀x,y:{x:ℝ| x ∈ I} .  ((x = y) 
⇒ (f[x] = f[y])))
  
⇒ (∀x:{x:ℝ| x ∈ I} 
        ((r0 < |f[x]|)
        
⇒ (∃d:{d:ℝ| r0 < d} 
             ∀y:{x:ℝ| x ∈ I} . ((|x - y| ≤ d) 
⇒ ((r0 < f[x] 
⇐⇒ r0 < f[y]) ∧ (f[x] < r0 
⇐⇒ f[y] < r0)))))))
Proof
Definitions occuring in Statement : 
icompact: icompact(I)
, 
i-member: r ∈ I
, 
interval: Interval
, 
rleq: x ≤ y
, 
rless: x < y
, 
rabs: |x|
, 
rsub: x - y
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
rfun: I ⟶ℝ
, 
continuous: f[x] continuous for x ∈ I
, 
nat_plus: ℕ+
, 
rless: x < y
, 
sq_exists: ∃x:A [B[x]]
, 
uall: ∀[x:A]. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
false: False
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
sq_stable: SqStable(P)
, 
rneq: x ≠ y
, 
uiff: uiff(P;Q)
, 
rge: x ≥ y
, 
req_int_terms: t1 ≡ t2
, 
real: ℝ
, 
rdiv: (x/y)
, 
less_than: a < b
, 
less_than': less_than'(a;b)
Lemmas referenced : 
function-is-continuous, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
istype-less_than, 
icompact_wf, 
squash_wf, 
true_wf, 
i-approx-of-compact, 
subtype_rel_self, 
iff_weakening_equal, 
i-approx_wf, 
small-reciprocal-real, 
rabs_wf, 
i-member_wf, 
rless_wf, 
int-to-real_wf, 
sq_stable__rless, 
sq_stable__i-member, 
rabs-difference-bound-rleq, 
rdiv_wf, 
rless-int, 
intformand_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
rleq_wf, 
rsub_wf, 
real_wf, 
req_wf, 
interval_wf, 
rleq_weakening_rless, 
radd_wf, 
rless-implies-rless, 
itermSubtract_wf, 
itermAdd_wf, 
req-iff-rsub-is-0, 
rless_functionality, 
req_weakening, 
rabs-of-nonneg, 
rless_functionality_wrt_implies, 
rleq_weakening_equal, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rleq-int-fractions2, 
sq_stable__less_than, 
decidable__le, 
intformle_wf, 
itermMultiply_wf, 
int_formula_prop_le_lemma, 
int_term_value_mul_lemma, 
rabs-strict-ub, 
rless-int-fractions2, 
rless_transitivity2, 
radd-preserves-rleq, 
rminus_wf, 
rmul_wf, 
rinv_wf2, 
itermMinus_wf, 
rleq_functionality, 
req_transitivity, 
rinv-as-rdiv, 
real_term_value_minus_lemma, 
real_term_value_mul_lemma, 
radd-preserves-rless, 
rless_irreflexivity, 
rabs-of-nonpos, 
rmul_reverses_rless, 
rminus_functionality, 
rmul_preserves_rless, 
rmul-rinv
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
isectElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
voidElimination, 
universeIsType, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
imageMemberEquality, 
baseClosed, 
instantiate, 
universeEquality, 
productElimination, 
independent_pairFormation, 
closedConclusion, 
inrFormation_alt, 
int_eqEquality, 
functionIsType, 
productIsType, 
setIsType, 
addEquality, 
inhabitedIsType, 
multiplyEquality, 
minusEquality
Latex:
\mforall{}I:Interval.  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}.
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\} 
                ((r0  <  |f[x]|)
                {}\mRightarrow{}  (\mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                          \mforall{}y:\{x:\mBbbR{}|  x  \mmember{}  I\} 
                              ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  ((r0  <  f[x]  \mLeftarrow{}{}\mRightarrow{}  r0  <  f[y])  \mwedge{}  (f[x]  <  r0  \mLeftarrow{}{}\mRightarrow{}  f[y]  <  r0)))))))
Date html generated:
2019_10_30-AM-07_47_43
Last ObjectModification:
2019_01_13-PM-07_20_40
Theory : reals
Home
Index