Nuprl Lemma : function-values-near-same-sign

I:Interval. ∀f:{x:ℝx ∈ I}  ⟶ ℝ.
  (icompact(I)
   (∀x,y:{x:ℝx ∈ I} .  ((x y)  (f[x] f[y])))
   (∀x:{x:ℝx ∈ I} 
        ((r0 < |f[x]|)
         (∃d:{d:ℝr0 < d} 
             ∀y:{x:ℝx ∈ I} ((|x y| ≤ d)  ((r0 < f[x] ⇐⇒ r0 < f[y]) ∧ (f[x] < r0 ⇐⇒ f[y] < r0)))))))


Proof




Definitions occuring in Statement :  icompact: icompact(I) i-member: r ∈ I interval: Interval rleq: x ≤ y rless: x < y rabs: |x| rsub: y req: y int-to-real: r(n) real: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q set: {x:A| B[x]}  function: x:A ⟶ B[x] natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T rfun: I ⟶ℝ continuous: f[x] continuous for x ∈ I nat_plus: + rless: x < y sq_exists: x:A [B[x]] uall: [x:A]. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: false: False squash: T true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q so_apply: x[s] cand: c∧ B sq_stable: SqStable(P) rneq: x ≠ y uiff: uiff(P;Q) rge: x ≥ y req_int_terms: t1 ≡ t2 real: rdiv: (x/y) less_than: a < b less_than': less_than'(a;b)
Lemmas referenced :  function-is-continuous nat_plus_properties decidable__lt full-omega-unsat intformnot_wf intformless_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_wf istype-less_than icompact_wf squash_wf true_wf i-approx-of-compact subtype_rel_self iff_weakening_equal i-approx_wf small-reciprocal-real rabs_wf i-member_wf rless_wf int-to-real_wf sq_stable__rless sq_stable__i-member rabs-difference-bound-rleq rdiv_wf rless-int intformand_wf itermVar_wf int_formula_prop_and_lemma int_term_value_var_lemma rleq_wf rsub_wf real_wf req_wf interval_wf rleq_weakening_rless radd_wf rless-implies-rless itermSubtract_wf itermAdd_wf req-iff-rsub-is-0 rless_functionality req_weakening rabs-of-nonneg rless_functionality_wrt_implies rleq_weakening_equal real_polynomial_null real_term_value_sub_lemma real_term_value_add_lemma real_term_value_var_lemma real_term_value_const_lemma rleq-int-fractions2 sq_stable__less_than decidable__le intformle_wf itermMultiply_wf int_formula_prop_le_lemma int_term_value_mul_lemma rabs-strict-ub rless-int-fractions2 rless_transitivity2 radd-preserves-rleq rminus_wf rmul_wf rinv_wf2 itermMinus_wf rleq_functionality req_transitivity rinv-as-rdiv real_term_value_minus_lemma real_term_value_mul_lemma radd-preserves-rless rless_irreflexivity rabs-of-nonpos rmul_reverses_rless rminus_functionality rmul_preserves_rless rmul-rinv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality sqequalRule independent_functionElimination hypothesis dependent_set_memberEquality_alt natural_numberEquality setElimination rename isectElimination unionElimination independent_isectElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt isect_memberEquality_alt voidElimination universeIsType applyEquality imageElimination equalityTransitivity equalitySymmetry because_Cache imageMemberEquality baseClosed instantiate universeEquality productElimination independent_pairFormation closedConclusion inrFormation_alt int_eqEquality functionIsType productIsType setIsType addEquality inhabitedIsType multiplyEquality minusEquality

Latex:
\mforall{}I:Interval.  \mforall{}f:\{x:\mBbbR{}|  x  \mmember{}  I\}    {}\mrightarrow{}  \mBbbR{}.
    (icompact(I)
    {}\mRightarrow{}  (\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  I\}  .    ((x  =  y)  {}\mRightarrow{}  (f[x]  =  f[y])))
    {}\mRightarrow{}  (\mforall{}x:\{x:\mBbbR{}|  x  \mmember{}  I\} 
                ((r0  <  |f[x]|)
                {}\mRightarrow{}  (\mexists{}d:\{d:\mBbbR{}|  r0  <  d\} 
                          \mforall{}y:\{x:\mBbbR{}|  x  \mmember{}  I\} 
                              ((|x  -  y|  \mleq{}  d)  {}\mRightarrow{}  ((r0  <  f[x]  \mLeftarrow{}{}\mRightarrow{}  r0  <  f[y])  \mwedge{}  (f[x]  <  r0  \mLeftarrow{}{}\mRightarrow{}  f[y]  <  r0)))))))



Date html generated: 2019_10_30-AM-07_47_43
Last ObjectModification: 2019_01_13-PM-07_20_40

Theory : reals


Home Index