Nuprl Lemma : rmul_reverses_rless

x,y,z:ℝ.  ((x < z)  (y < r0)  ((z y) < (x y)))


Proof




Definitions occuring in Statement :  rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 top: Top uiff: uiff(P;Q) and: P ∧ Q false: False not: ¬A iff: ⇐⇒ Q
Lemmas referenced :  rless_wf int-to-real_wf real_wf rminus-reverses-rless rminus_wf rmul_wf rless_functionality real_term_polynomial itermSubtract_wf itermMinus_wf itermConstant_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_minus_lemma req-iff-rsub-is-0 req_transitivity itermVar_wf itermMultiply_wf real_term_value_var_lemma real_term_value_mul_lemma req_inversion rminus-as-rmul rmul_functionality_wrt_rless rless-implies-rless rsub_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality natural_numberEquality hypothesis dependent_functionElimination independent_functionElimination because_Cache minusEquality independent_isectElimination sqequalRule computeAll lambdaEquality intEquality isect_memberEquality voidElimination voidEquality productElimination int_eqEquality

Latex:
\mforall{}x,y,z:\mBbbR{}.    ((x  <  z)  {}\mRightarrow{}  (y  <  r0)  {}\mRightarrow{}  ((z  *  y)  <  (x  *  y)))



Date html generated: 2017_10_03-AM-08_27_22
Last ObjectModification: 2017_07_28-AM-07_24_48

Theory : reals


Home Index