Nuprl Lemma : rmul-is-negative
∀x,y:ℝ.  (((x * y) < r0) 
⇒ ((x < r0) ∨ (y < r0)))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
or: P ∨ Q
, 
rneq: x ≠ y
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
req_transitivity, 
rmul-one-both, 
rdiv-zero, 
rmul-int-rdiv, 
rmul-rdiv-cancel, 
rmul-ac, 
rmul_comm, 
rmul_functionality, 
rmul-assoc, 
req_inversion, 
req_functionality, 
uiff_transitivity, 
rmul-rdiv-cancel2, 
rmul-zero-both, 
rless_functionality, 
req_weakening, 
req_wf, 
rless-int, 
rdiv_wf, 
rmul_preserves_rless, 
real_wf, 
rmul_wf, 
int-to-real_wf, 
rless_wf, 
rmul-is-negative1
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
unionElimination, 
inlFormation, 
isectElimination, 
natural_numberEquality, 
sqequalRule, 
inrFormation, 
independent_isectElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
introduction, 
imageMemberEquality, 
baseClosed, 
multiplyEquality, 
addLevel, 
promote_hyp
Latex:
\mforall{}x,y:\mBbbR{}.    (((x  *  y)  <  r0)  {}\mRightarrow{}  ((x  <  r0)  \mvee{}  (y  <  r0)))
Date html generated:
2016_05_18-AM-07_32_56
Last ObjectModification:
2016_01_17-AM-02_01_28
Theory : reals
Home
Index