Nuprl Lemma : rmul-is-negative

x,y:ℝ.  (((x y) < r0)  ((x < r0) ∨ (y < r0)))


Proof




Definitions occuring in Statement :  rless: x < y rmul: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q or: P ∨ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T or: P ∨ Q rneq: x ≠ y prop: uall: [x:A]. B[x] guard: {T} uimplies: supposing a iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_transitivity rmul-one-both rdiv-zero rmul-int-rdiv rmul-rdiv-cancel rmul-ac rmul_comm rmul_functionality rmul-assoc req_inversion req_functionality uiff_transitivity rmul-rdiv-cancel2 rmul-zero-both rless_functionality req_weakening req_wf rless-int rdiv_wf rmul_preserves_rless real_wf rmul_wf int-to-real_wf rless_wf rmul-is-negative1
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis unionElimination inlFormation isectElimination natural_numberEquality sqequalRule inrFormation independent_isectElimination because_Cache productElimination independent_pairFormation introduction imageMemberEquality baseClosed multiplyEquality addLevel promote_hyp

Latex:
\mforall{}x,y:\mBbbR{}.    (((x  *  y)  <  r0)  {}\mRightarrow{}  ((x  <  r0)  \mvee{}  (y  <  r0)))



Date html generated: 2016_05_18-AM-07_32_56
Last ObjectModification: 2016_01_17-AM-02_01_28

Theory : reals


Home Index