Nuprl Lemma : rdiv-zero

[x:ℝ]. (r0/x) r0 supposing x ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a rdiv: (x/y) implies:  Q prop: and: P ∧ Q uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rdiv_wf int-to-real_wf rneq_wf real_wf rmul_wf rinv_wf2 req_weakening req_functionality rmul-zero-both
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesis hypothesisEquality independent_isectElimination independent_functionElimination sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry productElimination

Latex:
\mforall{}[x:\mBbbR{}].  (r0/x)  =  r0  supposing  x  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_21_25
Last ObjectModification: 2015_12_28-AM-00_47_46

Theory : reals


Home Index