Nuprl Lemma : ratreal-negative
∀r:ℤ × ℕ+. (ratreal(r) < r0 ⇐⇒ fst(r) < 0)
Proof
Definitions occuring in Statement : 
ratreal: ratreal(r), 
rless: x < y, 
int-to-real: r(n), 
nat_plus: ℕ+, 
less_than: a < b, 
pi1: fst(t), 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
product: x:A × B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
pi1: fst(t), 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat_plus: ℕ+, 
uimplies: b supposing a, 
rneq: x ≠ y, 
guard: {T}, 
or: P ∨ Q, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
implies: P ⇒ Q, 
decidable: Dec(P), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
prop: ℙ, 
rless: x < y, 
sq_exists: ∃x:A [B[x]], 
rdiv: (x/y), 
uiff: uiff(P;Q), 
req_int_terms: t1 ≡ t2
Lemmas referenced : 
istype-int, 
nat_plus_wf, 
ratreal_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
rless_wf, 
istype-less_than, 
rless_functionality, 
ratreal-req, 
req_weakening, 
rless-int-fractions3, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rmul_preserves_rless, 
rmul_wf, 
rinv_wf2, 
itermSubtract_wf, 
req_transitivity, 
rmul_functionality, 
rmul-rinv, 
req-iff-rsub-is-0, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
productElimination, 
thin, 
sqequalRule, 
productIsType, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
universeIsType, 
sqequalHypSubstitution, 
isectElimination, 
independent_pairEquality, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
independent_isectElimination, 
inrFormation_alt, 
dependent_functionElimination, 
independent_functionElimination, 
natural_numberEquality, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
promote_hyp, 
multiplyEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}r:\mBbbZ{}  \mtimes{}  \mBbbN{}\msupplus{}.  (ratreal(r)  <  r0  \mLeftarrow{}{}\mRightarrow{}  fst(r)  <  0)
Date html generated:
2019_10_30-AM-09_34_25
Last ObjectModification:
2019_01_13-PM-01_42_04
Theory : reals
Home
Index