Step
*
1
1
of Lemma
rational-approx-implies-req
1. k : ℕ+
2. x : ℝ
3. a : ℕ+ ⟶ ℤ
4. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))
5. ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m))))
6. n : ℕ+
7. m : ℕ+
8. r0 < |r(2 * n * m)|
9. r0 < (r1/|r(2 * n * m)|)
⊢ |((r(m) * r(a n)) - r(n) * r(a m)) * (r1/r(2 * n * m))| ≤ (((r(2) * r(k)) * (r(n) + r(m))) * |(r1/r(2 * n * m))|)
BY
{ ((Assert (((r(2) * r(k)) * (r(n) + r(m))) * |(r1/r(2 * n * m))|) = ((r(k)/r(m)) + (r(k)/r(n))) BY
((RWO "rabs-of-nonneg" 0 THENA Auto)
THEN (RWW "rmul-distrib.1 rmul-distrib.2" 0 THENA Auto)
THEN (BLemma `radd_functionality` THENA Auto)
THEN nRNorm 0
THEN Auto))
THENM (RWO "-1" 0 THENA Auto)
) }
1
1. k : ℕ+
2. x : ℝ
3. a : ℕ+ ⟶ ℤ
4. ∀n:ℕ+. (|x - (r(a n)/r(2 * n))| ≤ (r(k)/r(n)))
5. ∀n,m:ℕ+. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| ≤ ((r(k)/r(n)) + (r(k)/r(m))))
6. n : ℕ+
7. m : ℕ+
8. r0 < |r(2 * n * m)|
9. r0 < (r1/|r(2 * n * m)|)
10. (((r(2) * r(k)) * (r(n) + r(m))) * |(r1/r(2 * n * m))|) = ((r(k)/r(m)) + (r(k)/r(n)))
⊢ |((r(m) * r(a n)) - r(n) * r(a m)) * (r1/r(2 * n * m))| ≤ ((r(k)/r(m)) + (r(k)/r(n)))
Latex:
Latex:
1. k : \mBbbN{}\msupplus{}
2. x : \mBbbR{}
3. a : \mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}
4. \mforall{}n:\mBbbN{}\msupplus{}. (|x - (r(a n)/r(2 * n))| \mleq{} (r(k)/r(n)))
5. \mforall{}n,m:\mBbbN{}\msupplus{}. (|(r(a n)/r(2 * n)) - (r(a m)/r(2 * m))| \mleq{} ((r(k)/r(n)) + (r(k)/r(m))))
6. n : \mBbbN{}\msupplus{}
7. m : \mBbbN{}\msupplus{}
8. r0 < |r(2 * n * m)|
9. r0 < (r1/|r(2 * n * m)|)
\mvdash{} |((r(m) * r(a n)) - r(n) * r(a m)) * (r1/r(2 * n * m))| \mleq{} (((r(2) * r(k)) * (r(n) + r(m)))
* |(r1/r(2 * n * m))|)
By
Latex:
((Assert (((r(2) * r(k)) * (r(n) + r(m))) * |(r1/r(2 * n * m))|) = ((r(k)/r(m)) + (r(k)/r(n))) BY
((RWO "rabs-of-nonneg" 0 THENA Auto)
THEN (RWW "rmul-distrib.1 rmul-distrib.2" 0 THENA Auto)
THEN (BLemma `radd\_functionality` THENA Auto)
THEN nRNorm 0
THEN Auto))
THENM (RWO "-1" 0 THENA Auto)
)
Home
Index