Step
*
2
2
of Lemma
rational-inner-approx-property
1. x : ℝ
2. n : ℕ+
3. a : ℤ
4. (x (2 * n)) = a ∈ ℤ
5. |x - (r(a))/2 * 2 * n| ≤ (r1/r(2 * n))
6. ¬4 < a
7. ¬a < -4
⊢ (|(r0)/2 * 2 * n| ≤ |x|) ∧ (|x - (r0)/2 * 2 * n| ≤ (r(2)/r(n)))
BY
{ ((Assert |a| ≤ 4 BY
(RWO "absval_unfold" 0 THEN Auto))
THEN RepeatFor 2 (Thin (-2))
THEN (Assert (r0)/2 * 2 * n = r0 BY
((RWO "int-rdiv-req" 0 THENA Auto) THEN nRNorm 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto) }
1
1. x : ℝ
2. n : ℕ+
3. a : ℤ
4. (x (2 * n)) = a ∈ ℤ
5. |x - (r(a))/2 * 2 * n| ≤ (r1/r(2 * n))
6. |a| ≤ 4
7. (r0)/2 * 2 * n = r0
8. |r0| ≤ |x|
⊢ |x - r0| ≤ (r(2)/r(n))
Latex:
Latex:
1. x : \mBbbR{}
2. n : \mBbbN{}\msupplus{}
3. a : \mBbbZ{}
4. (x (2 * n)) = a
5. |x - (r(a))/2 * 2 * n| \mleq{} (r1/r(2 * n))
6. \mneg{}4 < a
7. \mneg{}a < -4
\mvdash{} (|(r0)/2 * 2 * n| \mleq{} |x|) \mwedge{} (|x - (r0)/2 * 2 * n| \mleq{} (r(2)/r(n)))
By
Latex:
((Assert |a| \mleq{} 4 BY
(RWO "absval\_unfold" 0 THEN Auto))
THEN RepeatFor 2 (Thin (-2))
THEN (Assert (r0)/2 * 2 * n = r0 BY
((RWO "int-rdiv-req" 0 THENA Auto) THEN nRNorm 0 THEN Auto))
THEN RWO "-1" 0
THEN Auto)
Home
Index