Nuprl Lemma : rdiv-self

[x:ℝ]. (x/x) r1 supposing x ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  rdiv: (x/y) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop:
Lemmas referenced :  rmul-rinv req_witness rmul_wf rinv_wf2 int-to-real_wf rneq_wf real_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache independent_isectElimination hypothesis hypothesisEquality independent_functionElimination natural_numberEquality isect_memberEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[x:\mBbbR{}].  (x/x)  =  r1  supposing  x  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_21_20
Last ObjectModification: 2015_12_28-AM-00_47_42

Theory : reals


Home Index