Step
*
1
3
of Lemma
real-ratio-bound_wf
1. M : ℕ+
2. x : ℝ
3. y : ℝ
4. a : {r:ℝ| r0 < r}
5. b : {r:ℝ| r0 < r}
6. r0 < (r1/r(M))
7. v : ℤ
8. (v = 1 ∈ ℤ)
⇒ ((r1/r(M)) < (y - x))
9. (v = 2 ∈ ℤ)
⇒ ((r1/r(M)) < (x - y))
10. v = 0 ∈ ℤ
11. |x - y| < (r(2)/r(M))
12. (x < y)
⇒ (((r(M)/r(2)) * rmin(a;b)) ≤ (a/y - x))
13. (y < x)
⇒ (((r(M)/r(2)) * rmin(a;b)) ≤ (b/x - y))
⊢ r0 < ((r(M)/r(2)) * rmin(a;b))
BY
{ ((BLemma `rmul-is-positive` THENM OrLeft) THEN EAuto 1) }
Latex:
Latex:
1. M : \mBbbN{}\msupplus{}
2. x : \mBbbR{}
3. y : \mBbbR{}
4. a : \{r:\mBbbR{}| r0 < r\}
5. b : \{r:\mBbbR{}| r0 < r\}
6. r0 < (r1/r(M))
7. v : \mBbbZ{}
8. (v = 1) {}\mRightarrow{} ((r1/r(M)) < (y - x))
9. (v = 2) {}\mRightarrow{} ((r1/r(M)) < (x - y))
10. v = 0
11. |x - y| < (r(2)/r(M))
12. (x < y) {}\mRightarrow{} (((r(M)/r(2)) * rmin(a;b)) \mleq{} (a/y - x))
13. (y < x) {}\mRightarrow{} (((r(M)/r(2)) * rmin(a;b)) \mleq{} (b/x - y))
\mvdash{} r0 < ((r(M)/r(2)) * rmin(a;b))
By
Latex:
((BLemma `rmul-is-positive` THENM OrLeft) THEN EAuto 1)
Home
Index