Step
*
1
of Lemma
real-vec-sep-mul
1. n : ℕ
2. a : ℝ
3. b : ℝ
4. y : ℝ^n
5. y' : ℝ^n
6. i : ℕn
7. r0 < |(a*y i) - b*y' i|
⊢ a ≠ b ∨ (∃i:ℕn. (r0 < |(y i) - y' i|))
BY
{ (RepUR ``real-vec-mul`` -1 THEN (Assert ⌜a ≠ b ∨ (r0 < |(y i) - y' i|)⌝⋅ THENM (ParallelLast THEN Auto))) }
1
.....assertion.....
1. n : ℕ
2. a : ℝ
3. b : ℝ
4. y : ℝ^n
5. y' : ℝ^n
6. i : ℕn
7. r0 < |(a * (y i)) - b * (y' i)|
⊢ a ≠ b ∨ (r0 < |(y i) - y' i|)
Latex:
Latex:
1. n : \mBbbN{}
2. a : \mBbbR{}
3. b : \mBbbR{}
4. y : \mBbbR{}\^{}n
5. y' : \mBbbR{}\^{}n
6. i : \mBbbN{}n
7. r0 < |(a*y i) - b*y' i|
\mvdash{} a \mneq{} b \mvee{} (\mexists{}i:\mBbbN{}n. (r0 < |(y i) - y' i|))
By
Latex:
(RepUR ``real-vec-mul`` -1
THEN (Assert \mkleeneopen{}a \mneq{} b \mvee{} (r0 < |(y i) - y' i|)\mkleeneclose{}\mcdot{} THENM (ParallelLast THEN Auto))
)
Home
Index