Nuprl Lemma : real-vec-sep-mul

n:ℕ. ∀a,b:ℝ. ∀y,y':ℝ^n.  (a*y ≠ b*y'  (a ≠ b ∨ y ≠ y'))


Proof




Definitions occuring in Statement :  real-vec-sep: a ≠ b real-vec-mul: a*X real-vec: ^n rneq: x ≠ y real: nat: all: x:A. B[x] implies:  Q or: P ∨ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q exists: x:A. B[x] rev_implies:  Q prop: nat: so_lambda: λ2x.t[x] real-vec: ^n so_apply: x[s] or: P ∨ Q real-vec-mul: a*X guard: {T} uimplies: supposing a rge: x ≥ y itermConstant: "const" req_int_terms: t1 ≡ t2 false: False not: ¬A top: Top uiff: uiff(P;Q) rneq: x ≠ y
Lemmas referenced :  real-vec-sep-iff real-vec-mul_wf real-vec-sep_wf or_wf rneq_wf exists_wf int_seg_wf rless_wf int-to-real_wf rabs_wf rsub_wf real-vec_wf real_wf nat_wf r-triangle-inequality2 rmul_wf radd_wf radd-positive-implies rless_functionality_wrt_implies rleq_weakening_equal real_term_polynomial itermSubtract_wf itermMultiply_wf itermVar_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma req-iff-rsub-is-0 rless_functionality req_weakening rabs_functionality rabs-rmul rmul-is-positive zero-rleq-rabs rless_transitivity1 rless_irreflexivity rneq-if-rabs
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality isectElimination hypothesis productElimination independent_functionElimination addLevel orFunctionality natural_numberEquality setElimination rename sqequalRule lambdaEquality applyEquality because_Cache unionElimination inlFormation inrFormation dependent_pairFormation independent_isectElimination equalityTransitivity equalitySymmetry computeAll int_eqEquality intEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}n:\mBbbN{}.  \mforall{}a,b:\mBbbR{}.  \mforall{}y,y':\mBbbR{}\^{}n.    (a*y  \mneq{}  b*y'  {}\mRightarrow{}  (a  \mneq{}  b  \mvee{}  y  \mneq{}  y'))



Date html generated: 2017_10_03-AM-11_01_43
Last ObjectModification: 2017_04_07-PM-02_13_58

Theory : reals


Home Index