Step
*
1
2
1
1
1
2
of Lemma
reals-uncountable
.....upcase.....
1. z : ℕ ⟶ ℝ
2. x : ℝ
3. y : ℝ
4. x < y
5. X : ℕ ⟶ ℝ
6. Y : ℕ ⟶ ℝ
7. (X 0) = x ∈ ℝ
8. (Y 0) = y ∈ ℝ
9. ∀n:ℕ
(((X n) ≤ (X (n + 1)))
∧ ((X (n + 1)) < (Y (n + 1)))
∧ ((Y (n + 1)) ≤ (Y n))
∧ (((z n) < (X (n + 1))) ∨ ((Y (n + 1)) < (z n)))
∧ (((Y (n + 1)) - X (n + 1)) < (r1/r(n + 1))))
10. i : ℕ
11. k : ℤ
12. [%13] : 0 < k
13. ((X i) ≤ (X (i + (k - 1)))) ∧ ((X (i + (k - 1))) < (Y (i + (k - 1)))) ∧ ((Y (i + (k - 1))) ≤ (Y i))
⊢ ((X i) ≤ (X (i + k))) ∧ ((X (i + k)) < (Y (i + k))) ∧ ((Y (i + k)) ≤ (Y i))
BY
{ (((InstHyp [⌜i + (k - 1)⌝] (-5))⋅ THENA (Auto THEN Auto')) THEN Subst' ((i + (k - 1)) + 1) = (i + k) ∈ ℤ -1 THEN Auto)
⋅ }
Latex:
Latex:
.....upcase.....
1. z : \mBbbN{} {}\mrightarrow{} \mBbbR{}
2. x : \mBbbR{}
3. y : \mBbbR{}
4. x < y
5. X : \mBbbN{} {}\mrightarrow{} \mBbbR{}
6. Y : \mBbbN{} {}\mrightarrow{} \mBbbR{}
7. (X 0) = x
8. (Y 0) = y
9. \mforall{}n:\mBbbN{}
(((X n) \mleq{} (X (n + 1)))
\mwedge{} ((X (n + 1)) < (Y (n + 1)))
\mwedge{} ((Y (n + 1)) \mleq{} (Y n))
\mwedge{} (((z n) < (X (n + 1))) \mvee{} ((Y (n + 1)) < (z n)))
\mwedge{} (((Y (n + 1)) - X (n + 1)) < (r1/r(n + 1))))
10. i : \mBbbN{}
11. k : \mBbbZ{}
12. [\%13] : 0 < k
13. ((X i) \mleq{} (X (i + (k - 1))))
\mwedge{} ((X (i + (k - 1))) < (Y (i + (k - 1))))
\mwedge{} ((Y (i + (k - 1))) \mleq{} (Y i))
\mvdash{} ((X i) \mleq{} (X (i + k))) \mwedge{} ((X (i + k)) < (Y (i + k))) \mwedge{} ((Y (i + k)) \mleq{} (Y i))
By
Latex:
(((InstHyp [\mkleeneopen{}i + (k - 1)\mkleeneclose{}] (-5))\mcdot{} THENA (Auto THEN Auto'))
THEN Subst' ((i + (k - 1)) + 1) = (i + k) -1
THEN Auto)\mcdot{}
Home
Index