Nuprl Lemma : reals-uncountable
∀z:ℕ ⟶ ℝ. ∀x,y:ℝ.  ((x < y) ⇒ (∃u:ℝ. ((x ≤ u) ∧ (u ≤ y) ∧ (∀n:ℕ. u ≠ z n))))
Proof
Definitions occuring in Statement : 
rneq: x ≠ y, 
rleq: x ≤ y, 
rless: x < y, 
real: ℝ, 
nat: ℕ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
apply: f a, 
function: x:A ⟶ B[x]
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
exists: ∃x:A. B[x], 
uall: ∀[x:A]. B[x], 
pi1: fst(t), 
pi2: snd(t), 
prop: ℙ, 
top: Top, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
nat: ℕ, 
uimplies: b supposing a, 
le: A ≤ B, 
and: P ∧ Q, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
rless: x < y, 
sq_exists: ∃x:{A| B[x]}, 
real: ℝ, 
sq_stable: SqStable(P), 
squash: ↓T, 
nat_plus: ℕ+, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
rneq: x ≠ y, 
guard: {T}, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
cand: A c∧ B, 
sq_type: SQType(T), 
subtract: n - m, 
converges-to: lim n→∞.x[n] = y, 
rev_uimplies: rev_uimplies(P;Q), 
rsub: x - y, 
true: True, 
rge: x ≥ y, 
rbetween: x≤y≤z
Lemmas referenced : 
cantor-lemma2, 
primrec_wf, 
real_wf, 
rless_wf, 
pi1_wf_top, 
pi2_wf, 
subtype_rel_dep_function, 
nat_wf, 
int_seg_wf, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
set_wf, 
subtype_rel_product, 
top_wf, 
equal_wf, 
primrec0_lemma, 
member_wf, 
le_wf, 
all_wf, 
rleq_wf, 
nat_properties, 
sq_stable__less_than, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
or_wf, 
rsub_wf, 
rdiv_wf, 
int-to-real_wf, 
rless-int, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
exists_wf, 
primrec-unroll, 
eq_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
bnot_wf, 
not_wf, 
add-subtract-cancel, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_eq_int, 
iff_transitivity, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
less_than_wf, 
primrec-wf2, 
rleq_weakening_equal, 
add-zero, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
rless_transitivity2, 
rless_transitivity1, 
add-associates, 
add-swap, 
add-commutes, 
zero-add, 
rleq_transitivity, 
trivial-int-eq1, 
common-limit-squeeze, 
rleq_weakening_rless, 
nat_plus_wf, 
rabs_wf, 
rleq_functionality, 
rabs-of-nonneg, 
req_weakening, 
radd-preserves-rleq, 
radd_wf, 
rminus_wf, 
radd_functionality, 
rminus-zero, 
req_inversion, 
radd-assoc, 
radd_comm, 
req_transitivity, 
radd-ac, 
radd-rminus-assoc, 
radd-zero-both, 
subtract-add-cancel, 
req_wf, 
req_functionality, 
rleq-int-fractions, 
not-lt-2, 
less-iff-le, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
minus-one-mul-top, 
add_functionality_wrt_le, 
le-add-cancel, 
itermMultiply_wf, 
int_term_value_mul_lemma, 
rleq_functionality_wrt_implies, 
rleq_weakening, 
rneq_wf, 
rleq-limit, 
constant-limit, 
limit-shift
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
isectElimination, 
setEquality, 
productEquality, 
hypothesis, 
because_Cache, 
sqequalRule, 
dependent_set_memberEquality, 
independent_pairEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaEquality, 
applyEquality, 
functionEquality, 
natural_numberEquality, 
setElimination, 
rename, 
independent_isectElimination, 
independent_pairFormation, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
functionExtensionality, 
addEquality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
unionElimination, 
int_eqEquality, 
intEquality, 
computeAll, 
inrFormation, 
equalityElimination, 
impliesFunctionality, 
instantiate, 
cumulativity, 
hyp_replacement, 
dependent_set_memberFormation, 
minusEquality, 
multiplyEquality, 
inlFormation
Latex:
\mforall{}z:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}x,y:\mBbbR{}.    ((x  <  y)  {}\mRightarrow{}  (\mexists{}u:\mBbbR{}.  ((x  \mleq{}  u)  \mwedge{}  (u  \mleq{}  y)  \mwedge{}  (\mforall{}n:\mBbbN{}.  u  \mneq{}  z  n))))
Date html generated:
2017_10_03-AM-09_12_16
Last ObjectModification:
2017_07_28-AM-07_43_02
Theory : reals
Home
Index