Nuprl Lemma : limit-shift

m:ℕ. ∀X:ℕ ⟶ ℝ. ∀a:ℝ.  (lim n→∞.X[n]  lim n→∞.X[n m] a)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] add: m
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T sq_exists: x:{A| B[x]} nat: uall: [x:A]. B[x] nat_plus: + ge: i ≥  decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rneq: x ≠ y guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  real_wf converges-to_wf nat_plus_wf rless_wf int_formula_prop_less_lemma intformless_wf decidable__lt rless-int int-to-real_wf rdiv_wf rsub_wf rabs_wf rleq_wf all_wf nat_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties nat_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality setElimination rename introduction dependent_set_memberEquality cut hypothesis addEquality lemma_by_obid isectElimination natural_numberEquality unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination because_Cache functionEquality applyEquality inrFormation productElimination

Latex:
\mforall{}m:\mBbbN{}.  \mforall{}X:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.X[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.X[n  +  m]  =  a)



Date html generated: 2016_05_18-AM-07_39_21
Last ObjectModification: 2016_01_17-AM-02_04_46

Theory : reals


Home Index