Nuprl Lemma : reg_seq_mul_wf
∀[x,y:ℕ+ ⟶ ℤ].  (reg_seq_mul(x;y) ∈ ℕ+ ⟶ ℤ)
Proof
Definitions occuring in Statement : 
reg_seq_mul: reg_seq_mul(x;y), 
nat_plus: ℕ+, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
reg_seq_mul: reg_seq_mul(x;y), 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
not: ¬A, 
implies: P ⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
top: Top, 
and: P ∧ Q, 
prop: ℙ
Lemmas referenced : 
rounding-div_wf, 
nat_plus_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-less_than, 
nat_plus_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
multiplyEquality, 
applyEquality, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
isectIsTypeImplies, 
functionIsType
Latex:
\mforall{}[x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}].    (reg\_seq\_mul(x;y)  \mmember{}  \mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{})
Date html generated:
2019_10_16-PM-03_06_05
Last ObjectModification:
2019_02_15-AM-10_14_30
Theory : reals
Home
Index