Nuprl Lemma : regular-upto_wf
∀[k,n:ℕ]. ∀[f:ℕ+ ⟶ ℤ]. (regular-upto(k;n;f) ∈ 𝔹)
Proof
Definitions occuring in Statement :
regular-upto: regular-upto(k;n;f)
,
nat_plus: ℕ+
,
nat: ℕ
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
int: ℤ
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
regular-upto: regular-upto(k;n;f)
,
so_lambda: λ2x.t[x]
,
int_seg: {i..j-}
,
nat_plus: ℕ+
,
nat: ℕ
,
le: A ≤ B
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
not: ¬A
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
,
false: False
,
prop: ℙ
,
uiff: uiff(P;Q)
,
uimplies: b supposing a
,
lelt: i ≤ j < k
,
subtract: n - m
,
subtype_rel: A ⊆r B
,
top: Top
,
less_than': less_than'(a;b)
,
true: True
,
so_apply: x[s]
Lemmas referenced :
bdd-all_wf,
le_int_wf,
absval_wf,
subtract_wf,
nat_plus_wf,
decidable__lt,
false_wf,
not-lt-2,
condition-implies-le,
minus-add,
minus-one-mul,
zero-add,
minus-one-mul-top,
add-commutes,
add_functionality_wrt_le,
add-associates,
add-zero,
le-add-cancel,
less_than_wf,
int_seg_wf,
nat_wf
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalRule,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
lambdaEquality,
because_Cache,
multiplyEquality,
addEquality,
setElimination,
rename,
hypothesis,
natural_numberEquality,
applyEquality,
functionExtensionality,
dependent_set_memberEquality,
productElimination,
dependent_functionElimination,
unionElimination,
independent_pairFormation,
lambdaFormation,
voidElimination,
independent_functionElimination,
independent_isectElimination,
isect_memberEquality,
voidEquality,
intEquality,
minusEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality
Latex:
\mforall{}[k,n:\mBbbN{}]. \mforall{}[f:\mBbbN{}\msupplus{} {}\mrightarrow{} \mBbbZ{}]. (regular-upto(k;n;f) \mmember{} \mBbbB{})
Date html generated:
2017_10_03-AM-08_42_28
Last ObjectModification:
2017_09_06-PM-04_02_15
Theory : reals
Home
Index