Nuprl Lemma : req-rdiv
∀x,y,z:ℝ.  (z ≠ r0 ⇒ (x = (y/z) ⇐⇒ (x * z) = y))
Proof
Definitions occuring in Statement : 
rdiv: (x/y), 
rneq: x ≠ y, 
req: x = y, 
rmul: a * b, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
natural_number: $n
Definitions unfolded in proof : 
rev_implies: P ⇐ Q, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
member: t ∈ T, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
false: False, 
not: ¬A, 
rat_term_to_real: rat_term_to_real(f;t), 
rtermVar: rtermVar(var), 
rat_term_ind: rat_term_ind, 
pi1: fst(t), 
true: True, 
rtermMultiply: left "*" right, 
rtermDivide: num "/" denom, 
pi2: snd(t), 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
real_wf, 
int-to-real_wf, 
rneq_wf, 
rmul_wf, 
rdiv_wf, 
req_wf, 
assert-rat-term-eq2, 
rtermMultiply_wf, 
rtermDivide_wf, 
rtermVar_wf, 
istype-int, 
req_functionality, 
rmul_functionality, 
req_weakening, 
rdiv_functionality, 
req_inversion
Rules used in proof : 
natural_numberEquality, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
because_Cache, 
lambdaEquality_alt, 
int_eqEquality, 
approximateComputation, 
sqequalRule, 
productElimination
Latex:
\mforall{}x,y,z:\mBbbR{}.    (z  \mneq{}  r0  {}\mRightarrow{}  (x  =  (y/z)  \mLeftarrow{}{}\mRightarrow{}  (x  *  z)  =  y))
Date html generated:
2019_10_29-AM-09_56_16
Last ObjectModification:
2019_04_01-PM-11_09_44
Theory : reals
Home
Index