Nuprl Lemma : rleq2_functionality

x1,y1,x2,y2:ℕ+ ⟶ ℤ.  (bdd-diff(x1;x2)  bdd-diff(y1;y2)  (rleq2(x1;y1) ⇐⇒ rleq2(x2;y2)))


Proof




Definitions occuring in Statement :  rleq2: rleq2(x;y) bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} rminus: -(x) reg-seq-add: reg-seq-add(x;y)
Lemmas referenced :  rleq2_wf bdd-diff_wf nat_plus_wf rleq2-iff-rnonneg2 rnonneg2_functionality reg-seq-add_functionality_wrt_bdd-diff rminus_functionality_wrt_bdd-diff bdd-diff_inversion
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis functionEquality intEquality independent_pairFormation dependent_functionElimination independent_functionElimination productElimination sqequalRule lambdaEquality addEquality applyEquality minusEquality

Latex:
\mforall{}x1,y1,x2,y2:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x1;x2)  {}\mRightarrow{}  bdd-diff(y1;y2)  {}\mRightarrow{}  (rleq2(x1;y1)  \mLeftarrow{}{}\mRightarrow{}  rleq2(x2;y2)))



Date html generated: 2016_05_18-AM-07_15_22
Last ObjectModification: 2015_12_28-AM-00_42_47

Theory : reals


Home Index