Nuprl Lemma : rmin-req
∀[x,y:ℝ].  rmin(x;y) = y supposing y ≤ x
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rmin: rmin(x;y)
, 
req: x = y
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
rev_uimplies: rev_uimplies(P;Q)
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
Lemmas referenced : 
rmin-req-rminus-rmax, 
req_inversion, 
iff_weakening_equal, 
rminus-rminus-eq, 
true_wf, 
squash_wf, 
req_wf, 
rminus_functionality, 
req_functionality, 
req_weakening, 
rmax_wf, 
real_wf, 
rleq_wf, 
rmin_wf, 
req_witness, 
rminus-reverses-rleq, 
rminus_wf, 
rmax-req
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
independent_functionElimination, 
sqequalRule, 
isect_memberEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
applyEquality, 
lambdaEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality
Latex:
\mforall{}[x,y:\mBbbR{}].    rmin(x;y)  =  y  supposing  y  \mleq{}  x
Date html generated:
2016_05_18-AM-07_15_43
Last ObjectModification:
2016_01_17-AM-01_53_44
Theory : reals
Home
Index