Nuprl Lemma : rmin-stable-cases
∀a,b:ℝ. ∀P:Type.  (Stable{P} ⇒ (((rmin(a;b) = a) ⇒ P) ∧ ((rmin(a;b) = b) ⇒ P)) ⇒ P)
Proof
Definitions occuring in Statement : 
rmin: rmin(x;y), 
req: x = y, 
real: ℝ, 
stable: Stable{P}, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
or: P ∨ Q, 
not: ¬A, 
false: False, 
stable: Stable{P}, 
uimplies: b supposing a
Lemmas referenced : 
req_wf, 
rmin_wf, 
stable_wf, 
istype-universe, 
real_wf, 
false_wf, 
not_wf, 
istype-void, 
rmin-classical-cases, 
minimal-double-negation-hyp-elim, 
minimal-not-not-excluded-middle
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
sqequalRule, 
productIsType, 
functionIsType, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
instantiate, 
universeEquality, 
inhabitedIsType, 
unionEquality, 
functionEquality, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination, 
independent_isectElimination, 
unionElimination, 
voidElimination, 
unionIsType
Latex:
\mforall{}a,b:\mBbbR{}.  \mforall{}P:Type.    (Stable\{P\}  {}\mRightarrow{}  (((rmin(a;b)  =  a)  {}\mRightarrow{}  P)  \mwedge{}  ((rmin(a;b)  =  b)  {}\mRightarrow{}  P))  {}\mRightarrow{}  P)
Date html generated:
2019_10_29-AM-09_38_49
Last ObjectModification:
2019_07_29-PM-03_16_31
Theory : reals
Home
Index