Nuprl Lemma : rmul-ident-div

[r,s:ℝ].  ((r/r) s) supposing r ≠ r0


Proof




Definitions occuring in Statement :  rdiv: (x/y) rneq: x ≠ y req: y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf rdiv_wf rneq_wf int-to-real_wf real_wf rmul-identity1 req_functionality rmul_functionality rdiv-self req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_isectElimination hypothesis independent_functionElimination natural_numberEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry productElimination

Latex:
\mforall{}[r,s:\mBbbR{}].    ((r/r)  *  s)  =  s  supposing  r  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_21_29
Last ObjectModification: 2015_12_28-AM-00_47_52

Theory : reals


Home Index