Nuprl Lemma : rmul-rdiv-cancel10
∀[a,b,c:ℝ].  (b * a/b * c) = (a/c) supposing b ≠ r0 ∧ c ≠ r0
Proof
Definitions occuring in Statement : 
rdiv: (x/y)
, 
rneq: x ≠ y
, 
req: x = y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
and: P ∧ Q
, 
natural_number: $n
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
rat_term_to_real: rat_term_to_real(f;t)
, 
rtermDivide: num "/" denom
, 
rat_term_ind: rat_term_ind, 
rtermVar: rtermVar(var)
, 
pi1: fst(t)
, 
true: True
, 
rtermMultiply: left "*" right
, 
all: ∀x:A. B[x]
, 
pi2: snd(t)
, 
prop: ℙ
Lemmas referenced : 
assert-rat-term-eq2, 
rtermDivide_wf, 
rtermMultiply_wf, 
rtermVar_wf, 
int-to-real_wf, 
istype-int, 
rmul-neq-zero, 
req_witness, 
rdiv_wf, 
rmul_wf, 
rneq_wf, 
real_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
sqequalHypSubstitution, 
productElimination, 
thin, 
extract_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
lambdaEquality_alt, 
int_eqEquality, 
hypothesisEquality, 
independent_isectElimination, 
approximateComputation, 
sqequalRule, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
productIsType, 
universeIsType, 
isect_memberEquality_alt, 
isectIsTypeImplies, 
inhabitedIsType
Latex:
\mforall{}[a,b,c:\mBbbR{}].    (b  *  a/b  *  c)  =  (a/c)  supposing  b  \mneq{}  r0  \mwedge{}  c  \mneq{}  r0
Date html generated:
2019_10_29-AM-09_56_02
Last ObjectModification:
2019_04_01-PM-07_07_42
Theory : reals
Home
Index