Nuprl Lemma : rmul-neq-zero
∀x,y:ℝ.  (x ≠ r0 
⇒ y ≠ r0 
⇒ x * y ≠ r0)
Proof
Definitions occuring in Statement : 
rneq: x ≠ y
, 
rmul: a * b
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
rneq: x ≠ y
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
or: P ∨ Q
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
guard: {T}
, 
uimplies: b supposing a
, 
rsub: x - y
Lemmas referenced : 
rless-iff-rpositive, 
int-to-real_wf, 
rmul_wf, 
rless_wf, 
or_wf, 
rpositive_wf, 
rsub_wf, 
real_wf, 
radd_wf, 
rminus_wf, 
rpositive-rmul, 
rpositive_functionality, 
rmul_over_rminus, 
radd-zero-both, 
radd_comm, 
radd_functionality, 
rminus-zero, 
req_weakening, 
req_transitivity, 
rminus_functionality, 
rminus-rminus
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
dependent_functionElimination, 
hypothesisEquality, 
isectElimination, 
natural_numberEquality, 
hypothesis, 
productElimination, 
independent_functionElimination, 
addLevel, 
orFunctionality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
because_Cache, 
inrFormation, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
inlFormation, 
promote_hyp, 
levelHypothesis, 
orLevelFunctionality
Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  r0  {}\mRightarrow{}  y  \mneq{}  r0  {}\mRightarrow{}  x  *  y  \mneq{}  r0)
Date html generated:
2017_10_03-AM-08_27_46
Last ObjectModification:
2017_03_01-AM-00_03_32
Theory : reals
Home
Index