Nuprl Lemma : rmul-neq-zero

x,y:ℝ.  (x ≠ r0  y ≠ r0  y ≠ r0)


Proof




Definitions occuring in Statement :  rneq: x ≠ y rmul: b int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  rneq: x ≠ y all: x:A. B[x] implies:  Q or: P ∨ Q member: t ∈ T uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q prop: subtype_rel: A ⊆B real: guard: {T} uimplies: supposing a rsub: y
Lemmas referenced :  rless-iff-rpositive int-to-real_wf rmul_wf rless_wf or_wf rpositive_wf rsub_wf real_wf radd_wf rminus_wf rpositive-rmul rpositive_functionality rmul_over_rminus radd-zero-both radd_comm radd_functionality rminus-zero req_weakening req_transitivity rminus_functionality rminus-rminus
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation sqequalHypSubstitution unionElimination thin cut introduction extract_by_obid dependent_functionElimination hypothesisEquality isectElimination natural_numberEquality hypothesis productElimination independent_functionElimination addLevel orFunctionality applyEquality lambdaEquality setElimination rename because_Cache inrFormation equalityTransitivity equalitySymmetry independent_isectElimination inlFormation promote_hyp levelHypothesis orLevelFunctionality

Latex:
\mforall{}x,y:\mBbbR{}.    (x  \mneq{}  r0  {}\mRightarrow{}  y  \mneq{}  r0  {}\mRightarrow{}  x  *  y  \mneq{}  r0)



Date html generated: 2017_10_03-AM-08_27_46
Last ObjectModification: 2017_03_01-AM-00_03_32

Theory : reals


Home Index