Nuprl Lemma : rless-iff-rpositive
∀x,y:ℝ.  (x < y 
⇐⇒ rpositive(y - x))
Proof
Definitions occuring in Statement : 
rless: x < y
, 
rpositive: rpositive(x)
, 
rsub: x - y
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
rev_implies: P 
⇐ Q
, 
subtype_rel: A ⊆r B
, 
real: ℝ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
exists: ∃x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
rpositive: rpositive(x)
, 
sq_exists: ∃x:{A| B[x]}
, 
rsub: x - y
, 
rminus: -(x)
, 
radd: a + b
, 
accelerate: accelerate(k;f)
, 
has-value: (a)↓
, 
nequal: a ≠ b ∈ T 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
int_nzero: ℤ-o
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_stable: SqStable(P)
, 
le: A ≤ B
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
bfalse: ff
, 
rless: x < y
Lemmas referenced : 
minus-is-int-iff, 
add-is-int-iff, 
mul_preserves_lt, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
bool_cases, 
not_wf, 
bnot_wf, 
assert_wf, 
lt_int_wf, 
false_wf, 
int_term_value_minus_lemma, 
int_term_value_add_lemma, 
int_term_value_subtract_lemma, 
itermMinus_wf, 
itermAdd_wf, 
itermSubtract_wf, 
subtract-is-int-iff, 
subtract_wf, 
absval_ifthenelse, 
sq_stable__le, 
set_wf, 
nat_wf, 
absval_wf, 
rem_bounds_absval, 
iff_weakening_equal, 
reg-seq-list-add-as-l_sum, 
squash_wf, 
nequal_wf, 
div_rem_sum2, 
mul_cancel_in_lt, 
l_sum_nil_lemma, 
l_sum_cons_lemma, 
map_nil_lemma, 
map_cons_lemma, 
true_wf, 
equal_wf, 
int_subtype_base, 
subtype_base_sq, 
decidable__lt, 
int_formula_prop_eq_lemma, 
intformeq_wf, 
decidable__equal_int, 
nil_wf, 
nat_plus_wf, 
cons_wf, 
int-value-type, 
value-type-has-value, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_mul_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_plus_properties, 
mul_nat_plus, 
less_than_wf, 
rless-iff-large-diff, 
real_wf, 
rsub_wf, 
rpositive_wf, 
rless_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
sqequalRule, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
natural_numberEquality, 
introduction, 
imageMemberEquality, 
baseClosed, 
multiplyEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
dependent_set_memberFormation, 
callbyvalueReduce, 
sqleReflexivity, 
functionEquality, 
minusEquality, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
addLevel, 
instantiate, 
cumulativity, 
divideEquality, 
addEquality, 
imageElimination, 
universeEquality, 
remainderEquality, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
impliesFunctionality
Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  rpositive(y  -  x))
Date html generated:
2016_05_18-AM-07_03_48
Last ObjectModification:
2016_01_17-AM-01_50_32
Theory : reals
Home
Index