Nuprl Lemma : rless-iff-rpositive

x,y:ℝ.  (x < ⇐⇒ rpositive(y x))


Proof




Definitions occuring in Statement :  rless: x < y rpositive: rpositive(x) rsub: y real: all: x:A. B[x] iff: ⇐⇒ Q
Definitions unfolded in proof :  all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] rev_implies:  Q subtype_rel: A ⊆B real: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True exists: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top rpositive: rpositive(x) sq_exists: x:{A| B[x]} rsub: y rminus: -(x) radd: b accelerate: accelerate(k;f) has-value: (a)↓ nequal: a ≠ b ∈  sq_type: SQType(T) guard: {T} int_nzero: -o nat: so_lambda: λ2x.t[x] so_apply: x[s] sq_stable: SqStable(P) le: A ≤ B uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt bfalse: ff rless: x < y
Lemmas referenced :  minus-is-int-iff add-is-int-iff mul_preserves_lt assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_lt_int eqtt_to_assert bool_subtype_base bool_wf bool_cases not_wf bnot_wf assert_wf lt_int_wf false_wf int_term_value_minus_lemma int_term_value_add_lemma int_term_value_subtract_lemma itermMinus_wf itermAdd_wf itermSubtract_wf subtract-is-int-iff subtract_wf absval_ifthenelse sq_stable__le set_wf nat_wf absval_wf rem_bounds_absval iff_weakening_equal reg-seq-list-add-as-l_sum squash_wf nequal_wf div_rem_sum2 mul_cancel_in_lt l_sum_nil_lemma l_sum_cons_lemma map_nil_lemma map_cons_lemma true_wf equal_wf int_subtype_base subtype_base_sq decidable__lt int_formula_prop_eq_lemma intformeq_wf decidable__equal_int nil_wf nat_plus_wf cons_wf int-value-type value-type-has-value int_formula_prop_wf int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_mul_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformless_wf itermConstant_wf itermMultiply_wf itermVar_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_plus_properties mul_nat_plus less_than_wf rless-iff-large-diff real_wf rsub_wf rpositive_wf rless_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality lambdaEquality setElimination rename sqequalRule dependent_functionElimination productElimination independent_functionElimination dependent_set_memberEquality natural_numberEquality introduction imageMemberEquality baseClosed multiplyEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll dependent_set_memberFormation callbyvalueReduce sqleReflexivity functionEquality minusEquality because_Cache equalityTransitivity equalitySymmetry addLevel instantiate cumulativity divideEquality addEquality imageElimination universeEquality remainderEquality pointwiseFunctionality promote_hyp baseApply closedConclusion impliesFunctionality

Latex:
\mforall{}x,y:\mBbbR{}.    (x  <  y  \mLeftarrow{}{}\mRightarrow{}  rpositive(y  -  x))



Date html generated: 2016_05_18-AM-07_03_48
Last ObjectModification: 2016_01_17-AM-01_50_32

Theory : reals


Home Index