Nuprl Lemma : rpositive-rmul
∀x,y:ℝ.  (rpositive(x) 
⇒ rpositive(y) 
⇒ rpositive(x * y))
Proof
Definitions occuring in Statement : 
rpositive: rpositive(x)
, 
rmul: a * b
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
rmul: a * b
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat_plus: ℕ+
, 
subtype_rel: A ⊆r B
, 
int_upper: {i...}
, 
so_lambda: λ2x.t[x]
, 
real: ℝ
, 
so_apply: x[s]
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
rpositive2: rpositive2(x)
, 
exists: ∃x:A. B[x]
, 
nat: ℕ
, 
true: True
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
less_than: a < b
, 
squash: ↓T
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
cand: A c∧ B
, 
reg-seq-mul: reg-seq-mul(x;y)
, 
nequal: a ≠ b ∈ T 
, 
int_nzero: ℤ-o
, 
sq_stable: SqStable(P)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
ge: i ≥ j 
, 
gt: i > j
Lemmas referenced : 
real-has-value, 
rpositive2_functionality, 
accelerate_wf, 
imax_wf, 
canonical-bound_wf, 
int_upper_wf, 
all_wf, 
nat_plus_wf, 
le_wf, 
absval_wf, 
less_than_wf, 
reg-seq-mul_wf2, 
reg-seq-mul_wf, 
accelerate-bdd-diff, 
rpositive2_wf, 
rpositive-iff, 
rmul_wf, 
rpositive_wf, 
real_wf, 
nat_wf, 
ifthenelse_wf, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
add_nat_plus, 
multiply_nat_wf, 
subtype_rel_set, 
int_upper_subtype_nat, 
false_wf, 
nat_plus_properties, 
decidable__lt, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
itermMultiply_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
add-is-int-iff, 
multiply-is-int-iff, 
squash_wf, 
true_wf, 
add_functionality_wrt_eq, 
imax_unfold, 
iff_weakening_equal, 
imax_nat_plus, 
multiply_nat_plus, 
imax_ub, 
decidable__le, 
intformle_wf, 
int_formula_prop_le_lemma, 
mul_nat_plus, 
mul_preserves_le, 
nat_plus_subtype_nat, 
mul_preserves_lt, 
mul_cancel_in_le, 
equal-wf-base, 
mul-swap, 
div_rem_sum2, 
nequal_wf, 
left_mul_subtract_distrib, 
rem_bounds_absval, 
set_wf, 
int_subtype_base, 
decidable__equal_int, 
sq_stable__less_than, 
le_functionality, 
le_weakening, 
multiply_functionality_wrt_le, 
sq_stable__le, 
absval_pos, 
neg_mul_arg_bounds, 
gt_wf, 
mul_bounds_1a, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
sqequalRule, 
callbyvalueReduce, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
dependent_functionElimination, 
dependent_set_memberEquality, 
addEquality, 
multiplyEquality, 
natural_numberEquality, 
applyEquality, 
lambdaEquality, 
setElimination, 
rename, 
setEquality, 
because_Cache, 
independent_functionElimination, 
productElimination, 
addLevel, 
impliesFunctionality, 
functionEquality, 
intEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
applyLambdaEquality, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
promote_hyp, 
instantiate, 
cumulativity, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
imageElimination, 
universeEquality, 
inlFormation, 
inrFormation, 
productEquality, 
divideEquality, 
remainderEquality
Latex:
\mforall{}x,y:\mBbbR{}.    (rpositive(x)  {}\mRightarrow{}  rpositive(y)  {}\mRightarrow{}  rpositive(x  *  y))
Date html generated:
2017_10_03-AM-08_23_29
Last ObjectModification:
2017_07_28-AM-07_22_53
Theory : reals
Home
Index