Nuprl Lemma : rpositive2_functionality

x,y:ℕ+ ⟶ ℤ.  (bdd-diff(x;y)  (rpositive2(x) ⇐⇒ rpositive2(y)))


Proof




Definitions occuring in Statement :  rpositive2: rpositive2(x) bdd-diff: bdd-diff(f;g) nat_plus: + all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q rpositive2: rpositive2(x) exists: x:A. B[x] member: t ∈ T prop: uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T} bdd-diff: bdd-diff(f;g) nat_plus: + nat: le: A ≤ B decidable: Dec(P) or: P ∨ Q not: ¬A false: False uiff: uiff(P;Q) uimplies: supposing a subtract: m subtype_rel: A ⊆B top: Top less_than': less_than'(a;b) true: True so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) less_than: a < b squash: T sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt bfalse: ff rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  multiply_functionality_wrt_le le_weakening le_functionality add-swap mul-commutes mul-associates assert_of_bnot iff_weakening_uiff iff_transitivity eqff_to_assert assert_of_lt_int eqtt_to_assert bool_subtype_base bool_wf subtype_base_sq bool_cases int_term_value_minus_lemma int_formula_prop_less_lemma itermMinus_wf intformless_wf minus-is-int-iff not_wf bnot_wf assert_wf int_term_value_subtract_lemma itermSubtract_wf subtract-is-int-iff add-is-int-iff int_subtype_base multiply-is-int-iff lt_int_wf absval_ifthenelse one-mul mul-swap mul-distributes mul-distributes-right mul_bounds_1a subtract_wf int_term_value_mul_lemma itermMultiply_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties nat_plus_properties nat_plus_subtype_nat mul_preserves_le all_wf le_wf less_than_wf le-add-cancel add-zero add-associates add_functionality_wrt_le add-commutes minus-one-mul-top zero-add minus-one-mul minus-add condition-implies-le not-lt-2 false_wf decidable__lt mul_nat_plus bdd-diff_inversion nat_plus_wf bdd-diff_wf rpositive2_wf
Rules used in proof :  cut sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution productElimination thin lemma_by_obid isectElimination hypothesisEquality hypothesis functionEquality intEquality independent_pairFormation dependent_functionElimination independent_functionElimination dependent_pairFormation dependent_set_memberEquality addEquality because_Cache setElimination rename natural_numberEquality unionElimination voidElimination independent_isectElimination sqequalRule applyEquality lambdaEquality isect_memberEquality voidEquality minusEquality multiplyEquality int_eqEquality computeAll equalityTransitivity equalitySymmetry baseApply closedConclusion baseClosed pointwiseFunctionality promote_hyp imageElimination instantiate cumulativity impliesFunctionality

Latex:
\mforall{}x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x;y)  {}\mRightarrow{}  (rpositive2(x)  \mLeftarrow{}{}\mRightarrow{}  rpositive2(y)))



Date html generated: 2016_05_18-AM-07_00_42
Last ObjectModification: 2016_01_17-AM-01_49_37

Theory : reals


Home Index