Nuprl Lemma : rpositive2_functionality
∀x,y:ℕ+ ⟶ ℤ.  (bdd-diff(x;y) ⇒ (rpositive2(x) ⇐⇒ rpositive2(y)))
Proof
Definitions occuring in Statement : 
rpositive2: rpositive2(x), 
bdd-diff: bdd-diff(f;g), 
nat_plus: ℕ+, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
rpositive2: rpositive2(x), 
exists: ∃x:A. B[x], 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
guard: {T}, 
bdd-diff: bdd-diff(f;g), 
nat_plus: ℕ+, 
nat: ℕ, 
le: A ≤ B, 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
false: False, 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
top: Top, 
less_than': less_than'(a;b), 
true: True, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
ge: i ≥ j , 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
less_than: a < b, 
squash: ↓T, 
sq_type: SQType(T), 
ifthenelse: if b then t else f fi , 
btrue: tt, 
bfalse: ff, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
multiply_functionality_wrt_le, 
le_weakening, 
le_functionality, 
add-swap, 
mul-commutes, 
mul-associates, 
assert_of_bnot, 
iff_weakening_uiff, 
iff_transitivity, 
eqff_to_assert, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_subtype_base, 
bool_wf, 
subtype_base_sq, 
bool_cases, 
int_term_value_minus_lemma, 
int_formula_prop_less_lemma, 
itermMinus_wf, 
intformless_wf, 
minus-is-int-iff, 
not_wf, 
bnot_wf, 
assert_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract-is-int-iff, 
add-is-int-iff, 
int_subtype_base, 
multiply-is-int-iff, 
lt_int_wf, 
absval_ifthenelse, 
one-mul, 
mul-swap, 
mul-distributes, 
mul-distributes-right, 
mul_bounds_1a, 
subtract_wf, 
int_term_value_mul_lemma, 
itermMultiply_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermAdd_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
nat_plus_properties, 
nat_plus_subtype_nat, 
mul_preserves_le, 
all_wf, 
le_wf, 
less_than_wf, 
le-add-cancel, 
add-zero, 
add-associates, 
add_functionality_wrt_le, 
add-commutes, 
minus-one-mul-top, 
zero-add, 
minus-one-mul, 
minus-add, 
condition-implies-le, 
not-lt-2, 
false_wf, 
decidable__lt, 
mul_nat_plus, 
bdd-diff_inversion, 
nat_plus_wf, 
bdd-diff_wf, 
rpositive2_wf
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
functionEquality, 
intEquality, 
independent_pairFormation, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
because_Cache, 
setElimination, 
rename, 
natural_numberEquality, 
unionElimination, 
voidElimination, 
independent_isectElimination, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidEquality, 
minusEquality, 
multiplyEquality, 
int_eqEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
baseApply, 
closedConclusion, 
baseClosed, 
pointwiseFunctionality, 
promote_hyp, 
imageElimination, 
instantiate, 
cumulativity, 
impliesFunctionality
Latex:
\mforall{}x,y:\mBbbN{}\msupplus{}  {}\mrightarrow{}  \mBbbZ{}.    (bdd-diff(x;y)  {}\mRightarrow{}  (rpositive2(x)  \mLeftarrow{}{}\mRightarrow{}  rpositive2(y)))
Date html generated:
2016_05_18-AM-07_00_42
Last ObjectModification:
2016_01_17-AM-01_49_37
Theory : reals
Home
Index