Nuprl Lemma : rmul-rinv2

[x:ℝ]. (rinv(x) x) r1 supposing x ≠ r0


Proof




Definitions occuring in Statement :  rneq: x ≠ y rinv: rinv(x) req: y rmul: b int-to-real: r(n) real: uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a implies:  Q prop: uiff: uiff(P;Q) and: P ∧ Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  req_witness rmul_wf rinv_wf2 int-to-real_wf rneq_wf real_wf rmul-rinv req_functionality rmul_comm req_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality independent_functionElimination hypothesis natural_numberEquality sqequalRule isect_memberEquality because_Cache equalityTransitivity equalitySymmetry independent_isectElimination productElimination

Latex:
\mforall{}[x:\mBbbR{}].  (rinv(x)  *  x)  =  r1  supposing  x  \mneq{}  r0



Date html generated: 2016_05_18-AM-07_11_08
Last ObjectModification: 2015_12_28-AM-00_39_48

Theory : reals


Home Index