Nuprl Lemma : rmul-rinv2
∀[x:ℝ]. (rinv(x) * x) = r1 supposing x ≠ r0
Proof
Definitions occuring in Statement :
rneq: x ≠ y
,
rinv: rinv(x)
,
req: x = y
,
rmul: a * b
,
int-to-real: r(n)
,
real: ℝ
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
natural_number: $n
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
implies: P
⇒ Q
,
prop: ℙ
,
uiff: uiff(P;Q)
,
and: P ∧ Q
,
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :
req_witness,
rmul_wf,
rinv_wf2,
int-to-real_wf,
rneq_wf,
real_wf,
rmul-rinv,
req_functionality,
rmul_comm,
req_weakening
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
independent_functionElimination,
hypothesis,
natural_numberEquality,
sqequalRule,
isect_memberEquality,
because_Cache,
equalityTransitivity,
equalitySymmetry,
independent_isectElimination,
productElimination
Latex:
\mforall{}[x:\mBbbR{}]. (rinv(x) * x) = r1 supposing x \mneq{} r0
Date html generated:
2016_05_18-AM-07_11_08
Last ObjectModification:
2015_12_28-AM-00_39_48
Theory : reals
Home
Index