Nuprl Lemma : rneq-by-function
∀x,y,a,b:ℝ. ∀f:ℝ ⟶ ℝ. (a ≠ b
⇒ (f[x] = a)
⇒ (f[y] = b)
⇒ (∀x,y:ℝ. ((x = y)
⇒ (f[x] = f[y])))
⇒ x ≠ y)
Proof
Definitions occuring in Statement :
rneq: x ≠ y
,
req: x = y
,
real: ℝ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
function: x:A ⟶ B[x]
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
implies: P
⇒ Q
,
member: t ∈ T
,
uimplies: b supposing a
,
so_apply: x[s]
,
iff: P
⇐⇒ Q
,
and: P ∧ Q
,
rev_implies: P
⇐ Q
,
or: P ∨ Q
,
not: ¬A
,
uall: ∀[x:A]. B[x]
,
prop: ℙ
,
false: False
Lemmas referenced :
real-weak-Markov,
rneq-cases,
rneq_functionality,
req_wf,
istype-void,
rneq_wf,
real_wf,
rneq_irreflexivity,
req_weakening
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
introduction,
extract_by_obid,
sqequalHypSubstitution,
dependent_functionElimination,
thin,
hypothesisEquality,
independent_isectElimination,
applyEquality,
independent_functionElimination,
because_Cache,
hypothesis,
productElimination,
unionElimination,
inlFormation_alt,
universeIsType,
isectElimination,
sqequalRule,
functionIsType,
inrFormation_alt,
inhabitedIsType,
voidElimination
Latex:
\mforall{}x,y,a,b:\mBbbR{}. \mforall{}f:\mBbbR{} {}\mrightarrow{} \mBbbR{}.
(a \mneq{} b {}\mRightarrow{} (f[x] = a) {}\mRightarrow{} (f[y] = b) {}\mRightarrow{} (\mforall{}x,y:\mBbbR{}. ((x = y) {}\mRightarrow{} (f[x] = f[y]))) {}\mRightarrow{} x \mneq{} y)
Date html generated:
2019_10_29-AM-10_23_31
Last ObjectModification:
2019_04_04-AM-11_02_32
Theory : reals
Home
Index