Nuprl Lemma : rnexp-converges-ext

x:ℝ((|x| < r1)  lim n→∞.x^n r0)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rless: x < y rabs: |x| rnexp: x^k1 int-to-real: r(n) real: all: x:A. B[x] implies:  Q natural_number: $n
Definitions unfolded in proof :  so_apply: x[s] so_lambda: λ2x.t[x] uimplies: supposing a so_apply: x[s1;s2] top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2;s3;s4] so_lambda: so_lambda(x,y,z,w.t[x; y; z; w]) uall: [x:A]. B[x] rationals-dense-ext rnexp-converges reg-seq-mul: reg-seq-mul(x;y) bnot: ¬bb le_int: i ≤j canonical-bound: canonical-bound(r) imax: imax(a;b) reg-seq-adjust: reg-seq-adjust(n;x) reg-seq-inv: reg-seq-inv(x) accelerate: accelerate(k;f) eq_int: (i =z j) bfalse: ff it: btrue: tt lt_int: i <j ifthenelse: if then else fi  mu-ge: mu-ge(f;n) rinv: rinv(x) rmul: b rdiv: (x/y) rabs: |x| member: t ∈ T
Lemmas referenced :  strict4-spread lifting-strict-callbyvalue rnexp-converges rationals-dense-ext
Rules used in proof :  independent_isectElimination voidEquality voidElimination isect_memberEquality baseClosed isectElimination equalitySymmetry equalityTransitivity sqequalHypSubstitution thin sqequalRule hypothesis extract_by_obid instantiate cut sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution introduction

Latex:
\mforall{}x:\mBbbR{}.  ((|x|  <  r1)  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x\^{}n  =  r0)



Date html generated: 2018_05_22-PM-01_51_16
Last ObjectModification: 2018_05_21-AM-00_09_47

Theory : reals


Home Index