Nuprl Lemma : rnexp-converges-ext
∀x:ℝ. ((|x| < r1) 
⇒ lim n→∞.x^n = r0)
Proof
Definitions occuring in Statement : 
converges-to: lim n→∞.x[n] = y
, 
rless: x < y
, 
rabs: |x|
, 
rnexp: x^k1
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
, 
uimplies: b supposing a
, 
so_apply: x[s1;s2]
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
rationals-dense-ext, 
rnexp-converges, 
reg-seq-mul: reg-seq-mul(x;y)
, 
bnot: ¬bb
, 
le_int: i ≤z j
, 
canonical-bound: canonical-bound(r)
, 
imax: imax(a;b)
, 
reg-seq-adjust: reg-seq-adjust(n;x)
, 
reg-seq-inv: reg-seq-inv(x)
, 
accelerate: accelerate(k;f)
, 
eq_int: (i =z j)
, 
bfalse: ff
, 
it: ⋅
, 
btrue: tt
, 
lt_int: i <z j
, 
ifthenelse: if b then t else f fi 
, 
mu-ge: mu-ge(f;n)
, 
rinv: rinv(x)
, 
rmul: a * b
, 
rdiv: (x/y)
, 
rabs: |x|
, 
member: t ∈ T
Lemmas referenced : 
strict4-spread, 
lifting-strict-callbyvalue, 
rnexp-converges, 
rationals-dense-ext
Rules used in proof : 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
equalitySymmetry, 
equalityTransitivity, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}x:\mBbbR{}.  ((|x|  <  r1)  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x\^{}n  =  r0)
Date html generated:
2018_05_22-PM-01_51_16
Last ObjectModification:
2018_05_21-AM-00_09_47
Theory : reals
Home
Index