Step
*
1
1
of Lemma
rnexp-converges
1. x : ℝ@i
2. |x| < r1
3. n : ℕ+
4. m : ℤ
5. |x| < (r(m)/r(n))
6. (r(m)/r(n)) < r1
7. 0 ≤ m
8. (m + 1) ≤ n
⊢ lim n→∞.x^n = r0
BY
{ TACTIC:(Assert ∀k:ℕ. ∃t:ℕ. k * m^t < n^t BY
(Auto⋅
THEN InstLemma `exp-ratio-property` [⌜m⌝;⌜n⌝;⌜k⌝]⋅
THEN Auto
THEN With ⌜exp-ratio(m;n;0;k;1)⌝ (D 0)⋅
THEN Auto
THEN MemTypeHD (-1)
THEN Auto)) }
1
1. x : ℝ@i
2. |x| < r1
3. n : ℕ+
4. m : ℤ
5. |x| < (r(m)/r(n))
6. (r(m)/r(n)) < r1
7. 0 ≤ m
8. (m + 1) ≤ n
9. ∀k:ℕ. ∃t:ℕ. k * m^t < n^t
⊢ lim n→∞.x^n = r0
Latex:
Latex:
1. x : \mBbbR{}@i
2. |x| < r1
3. n : \mBbbN{}\msupplus{}
4. m : \mBbbZ{}
5. |x| < (r(m)/r(n))
6. (r(m)/r(n)) < r1
7. 0 \mleq{} m
8. (m + 1) \mleq{} n
\mvdash{} lim n\mrightarrow{}\minfty{}.x\^{}n = r0
By
Latex:
TACTIC:(Assert \mforall{}k:\mBbbN{}. \mexists{}t:\mBbbN{}. k * m\^{}t < n\^{}t BY
(Auto\mcdot{}
THEN InstLemma `exp-ratio-property` [\mkleeneopen{}m\mkleeneclose{};\mkleeneopen{}n\mkleeneclose{};\mkleeneopen{}k\mkleeneclose{}]\mcdot{}
THEN Auto
THEN With \mkleeneopen{}exp-ratio(m;n;0;k;1)\mkleeneclose{} (D 0)\mcdot{}
THEN Auto
THEN MemTypeHD (-1)
THEN Auto))
Home
Index