Step
*
1
2
1
of Lemma
rprod-split
1. d : ℤ
2. 0 < d
3. ∀[n:ℤ]. ∀[x:{n..(n + (d - 1)) + 1-} ⟶ ℝ]. ∀[i:ℤ].
rprod(n;n + (d - 1);k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + (d - 1);k.x[k]))
supposing (i ≤ (n + (d - 1))) ∧ (n ≤ (i + 1))
4. n : ℤ
5. ¬n + d < n
6. x : {n..(n + d) + 1-} ⟶ ℝ
7. i : ℤ
8. i ≤ (n + d)
9. n ≤ (i + 1)
⊢ (rprod(n;(n + d) - 1;k.x[k]) * x[n + d]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + d;k.x[k]))
BY
{ (Subst' (n + d) - 1 ~ n + (d - 1) 0 THENA Auto) }
1
1. d : ℤ
2. 0 < d
3. ∀[n:ℤ]. ∀[x:{n..(n + (d - 1)) + 1-} ⟶ ℝ]. ∀[i:ℤ].
rprod(n;n + (d - 1);k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + (d - 1);k.x[k]))
supposing (i ≤ (n + (d - 1))) ∧ (n ≤ (i + 1))
4. n : ℤ
5. ¬n + d < n
6. x : {n..(n + d) + 1-} ⟶ ℝ
7. i : ℤ
8. i ≤ (n + d)
9. n ≤ (i + 1)
⊢ (rprod(n;n + (d - 1);k.x[k]) * x[n + d]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + d;k.x[k]))
Latex:
Latex:
1. d : \mBbbZ{}
2. 0 < d
3. \mforall{}[n:\mBbbZ{}]. \mforall{}[x:\{n..(n + (d - 1)) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}]. \mforall{}[i:\mBbbZ{}].
rprod(n;n + (d - 1);k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + (d - 1);k.x[k]))
supposing (i \mleq{} (n + (d - 1))) \mwedge{} (n \mleq{} (i + 1))
4. n : \mBbbZ{}
5. \mneg{}n + d < n
6. x : \{n..(n + d) + 1\msupminus{}\} {}\mrightarrow{} \mBbbR{}
7. i : \mBbbZ{}
8. i \mleq{} (n + d)
9. n \mleq{} (i + 1)
\mvdash{} (rprod(n;(n + d) - 1;k.x[k]) * x[n + d]) = (rprod(n;i;k.x[k]) * rprod(i + 1;n + d;k.x[k]))
By
Latex:
(Subst' (n + d) - 1 \msim{} n + (d - 1) 0 THENA Auto)
Home
Index