Nuprl Lemma : rprod-split
∀[n,m:ℤ]. ∀[x:{n..m + 1-} ⟶ ℝ]. ∀[i:ℤ].
  rprod(n;m;k.x[k]) = (rprod(n;i;k.x[k]) * rprod(i + 1;m;k.x[k])) supposing (i ≤ m) ∧ (n ≤ (i + 1))
Proof
Definitions occuring in Statement : 
rprod: rprod(n;m;k.x[k])
, 
req: x = y
, 
rmul: a * b
, 
real: ℝ
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rprod: rprod(n;m;k.x[k])
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
bnot: ¬bb
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
subtract: n - m
, 
cand: A c∧ B
, 
less_than': less_than'(a;b)
, 
true: True
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
req_witness, 
rprod_wf, 
int_seg_wf, 
rmul_wf, 
decidable__lt, 
intformnot_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_add_lemma, 
istype-le, 
decidable__le, 
real_wf, 
subtract-1-ge-0, 
istype-nat, 
add-zero, 
decidable__equal_int, 
subtype_base_sq, 
int_subtype_base, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
rprod-empty, 
int-to-real_wf, 
itermSubtract_wf, 
itermMultiply_wf, 
req-iff-rsub-is-0, 
req_functionality, 
rprod-single, 
rmul_functionality, 
req_weakening, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_const_lemma, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
int_term_value_subtract_lemma, 
subtract_wf, 
subtype_rel_function, 
int_seg_subtype, 
le_reflexive, 
add-is-int-iff, 
istype-false, 
not-le-2, 
condition-implies-le, 
add-associates, 
minus-add, 
minus-one-mul, 
add-swap, 
minus-one-mul-top, 
add-mul-special, 
zero-mul, 
zero-add, 
add-commutes, 
le-add-cancel, 
subtype_rel_self, 
rmul_assoc, 
trivial-int-eq1
Rules used in proof : 
cut, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
productElimination, 
isectIsTypeImplies, 
inhabitedIsType, 
functionIsTypeImplies, 
isect_memberFormation_alt, 
addEquality, 
applyEquality, 
dependent_set_memberEquality_alt, 
unionElimination, 
productIsType, 
because_Cache, 
closedConclusion, 
functionIsType, 
instantiate, 
cumulativity, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
equalityIstype, 
promote_hyp, 
baseApply, 
baseClosed, 
minusEquality, 
multiplyEquality
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:\{n..m  +  1\msupminus{}\}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[i:\mBbbZ{}].
    rprod(n;m;k.x[k])  =  (rprod(n;i;k.x[k])  *  rprod(i  +  1;m;k.x[k]))  supposing  (i  \mleq{}  m)  \mwedge{}  (n  \mleq{}  (i  +  1))
Date html generated:
2019_10_29-AM-10_18_28
Last ObjectModification:
2019_01_15-PM-00_19_28
Theory : reals
Home
Index