Nuprl Lemma : rprod-empty
∀[n,m:ℤ]. ∀[x:Top].  rprod(n;m;k.x[k]) ~ r1 supposing m < n
Proof
Definitions occuring in Statement : 
rprod: rprod(n;m;k.x[k]), 
int-to-real: r(n), 
less_than: a < b, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
top: Top, 
so_apply: x[s], 
natural_number: $n, 
int: ℤ, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
rprod: rprod(n;m;k.x[k]), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q, 
iff: P ⇐⇒ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
prop: ℙ
Lemmas referenced : 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
full-omega-unsat, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformnot_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_wf, 
istype-less_than, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
because_Cache, 
sqequalRule, 
dependent_pairFormation_alt, 
equalityIstype, 
promote_hyp, 
dependent_functionElimination, 
instantiate, 
cumulativity, 
independent_functionElimination, 
voidElimination, 
natural_numberEquality, 
approximateComputation, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
independent_pairFormation, 
universeIsType, 
axiomSqEquality, 
isectIsTypeImplies
Latex:
\mforall{}[n,m:\mBbbZ{}].  \mforall{}[x:Top].    rprod(n;m;k.x[k])  \msim{}  r1  supposing  m  <  n
Date html generated:
2019_10_29-AM-10_16_42
Last ObjectModification:
2019_01_15-AM-10_03_40
Theory : reals
Home
Index