Nuprl Lemma : rroot-exists-ext

i:{2...}. ∀x:{x:ℝ(↑isEven(i))  (r0 ≤ x)} .  (∃y:ℝ [(((↑isEven(i))  (r0 ≤ y)) ∧ (y^i x))])


Proof




Definitions occuring in Statement :  rleq: x ≤ y rnexp: x^k1 req: y int-to-real: r(n) real: isEven: isEven(n) int_upper: {i...} assert: b all: x:A. B[x] sq_exists: x:A [B[x]] implies:  Q and: P ∧ Q set: {x:A| B[x]}  natural_number: $n
Definitions unfolded in proof :  member: t ∈ T subtract: m so_lambda: λ2x.t[x] so_apply: x[s] accelerate: accelerate(k;f) rroot-exists rroot-exists1-ext converges-iff-cauchy rroot-exists-part2 uall: [x:A]. B[x] so_lambda: so_lambda4 so_apply: x[s1;s2;s3;s4] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a

Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .    (\mexists{}y:\mBbbR{}  [(((\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  y))  \mwedge{}  (y\^{}i  =  x))])



Date html generated: 2020_05_20-PM-00_30_06
Last ObjectModification: 2020_03_17-PM-02_58_33

Theory : reals


Home Index