Nuprl Lemma : rroot-exists
∀i:{2...}. ∀x:{x:ℝ| (↑isEven(i)) 
⇒ (r0 ≤ x)} .  (∃y:{ℝ| (((↑isEven(i)) 
⇒ (r0 ≤ y)) ∧ (y^i = x))})
Proof
Definitions occuring in Statement : 
rleq: x ≤ y
, 
rnexp: x^k1
, 
req: x = y
, 
int-to-real: r(n)
, 
real: ℝ
, 
isEven: isEven(n)
, 
int_upper: {i...}
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
sq_exists: ∃x:{A| B[x]}
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
converges: x[n]↓ as n→∞
, 
sq_exists: ∃x:{A| B[x]}
, 
cand: A c∧ B
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
int_upper: {i...}
, 
subtype_rel: A ⊆r B
, 
nat: ℕ
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
squash: ↓T
, 
guard: {T}
, 
top: Top
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
uiff: uiff(P;Q)
, 
bfalse: ff
, 
sq_type: SQType(T)
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
subtract: n - m
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
rroot-exists1-ext, 
rroot-exists-part2, 
converges-iff-cauchy, 
nat_wf, 
assert_wf, 
isEven_wf, 
rleq_wf, 
int-to-real_wf, 
req_wf, 
rnexp_wf, 
int_upper_subtype_nat, 
false_wf, 
le_wf, 
set_wf, 
real_wf, 
int_upper_wf, 
constant-rleq-limit, 
sq_stable__rleq, 
unique-limit, 
rnexp_zero_lemma, 
constant-limit, 
req_weakening, 
rmul-limit, 
converges-to_wf, 
subtract_wf, 
nat_properties, 
int_upper_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
less_than_wf, 
primrec-wf2, 
equal_wf, 
converges-to_functionality, 
rmul_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
int_subtype_base, 
rmul_comm, 
req_functionality, 
rnexp_unroll, 
rmul-one-both
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
productElimination, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
setElimination, 
rename, 
dependent_set_memberFormation, 
isectElimination, 
independent_pairFormation, 
productEquality, 
functionEquality, 
because_Cache, 
natural_numberEquality, 
dependent_set_memberEquality, 
independent_isectElimination, 
functionExtensionality, 
imageMemberEquality, 
baseClosed, 
imageElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
equalityTransitivity, 
equalitySymmetry, 
equalityElimination, 
promote_hyp, 
instantiate, 
cumulativity
Latex:
\mforall{}i:\{2...\}.  \mforall{}x:\{x:\mBbbR{}|  (\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  x)\}  .    (\mexists{}y:\{\mBbbR{}|  (((\muparrow{}isEven(i))  {}\mRightarrow{}  (r0  \mleq{}  y))  \mwedge{}  (y\^{}i  =  x))\})
Date html generated:
2017_10_03-AM-10_39_20
Last ObjectModification:
2017_07_28-AM-08_15_44
Theory : reals
Home
Index