Nuprl Lemma : rmul-limit

x,y:ℕ ⟶ ℝ. ∀a,b:ℝ.  (lim n→∞.x[n]  lim n→∞.y[n]  lim n→∞.x[n] y[n] b)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y rmul: b real: nat: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x]
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q converges-to: lim n→∞.x[n] y member: t ∈ T prop: uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x] converges: x[n]↓ as n→∞ bounded-sequence: bounded-sequence(n.x[n]) nat_plus: + guard: {T} decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top and: P ∧ Q iff: ⇐⇒ Q rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y nat: ge: i ≥  le: A ≤ B less_than': less_than'(a;b) subtype_rel: A ⊆B less_than: a < b squash: T true: True sq-all-large: large(n).{P[n]} rneq: x ≠ y sq_exists: x:{A| B[x]} rsub: y uiff: uiff(P;Q) sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x)
Lemmas referenced :  converges-to_wf nat_wf real_wf integer-bound converges-implies-bounded imax_wf imax_nat_plus nat_plus_wf nat_plus_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf less_than_wf rleq_wf rabs_wf int-to-real_wf all_wf rleq-int imax_ub decidable__le intformle_wf int_formula_prop_le_lemma le_wf rleq_functionality_wrt_implies rleq_weakening_equal rabs-bounds nat_properties mul_bounds_1a false_wf multiply_nat_wf nat_plus_subtype_nat mul_nat_plus sq-all-large-and rsub_wf rdiv_wf rless-int mul_bounds_1b rless_wf rmul_wf radd_wf r-triangle-inequality rminus_wf uiff_transitivity rleq_functionality req_weakening rabs_functionality radd_functionality req_transitivity rmul-distrib rmul_over_rminus req_inversion radd-assoc radd-ac radd-rminus-assoc rabs-rmul-rleq itermMultiply_wf int_term_value_mul_lemma rleq-int-fractions sq_stable__all sq_stable__rleq less_than'_wf squash_wf rmul-int-rdiv2 rmul-int-rdiv itermAdd_wf int_term_value_add_lemma uimplies_transitivity rdiv_functionality radd-int radd-rdiv radd_functionality_wrt_rleq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin sqequalRule lambdaEquality applyEquality functionExtensionality hypothesisEquality hypothesis functionEquality dependent_functionElimination productElimination dependent_pairFormation independent_functionElimination dependent_set_memberEquality natural_numberEquality setElimination rename equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination independent_isectElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll productEquality because_Cache inrFormation inlFormation multiplyEquality imageMemberEquality baseClosed independent_pairEquality minusEquality axiomEquality imageElimination addEquality

Latex:
\mforall{}x,y:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}.  \mforall{}a,b:\mBbbR{}.    (lim  n\mrightarrow{}\minfty{}.x[n]  =  a  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.y[n]  =  b  {}\mRightarrow{}  lim  n\mrightarrow{}\minfty{}.x[n]  *  y[n]  =  a  *  b)



Date html generated: 2017_10_03-AM-09_05_48
Last ObjectModification: 2017_07_28-AM-07_41_44

Theory : reals


Home Index