Nuprl Lemma : rabs-bounds

[x:ℝ]. ((-(|x|) ≤ x) ∧ (x ≤ |x|))


Proof




Definitions occuring in Statement :  rleq: x ≤ y rabs: |x| rminus: -(x) real: uall: [x:A]. B[x] and: P ∧ Q
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T and: P ∧ Q rleq: x ≤ y rnonneg: rnonneg(x) all: x:A. B[x] le: A ≤ B not: ¬A implies:  Q false: False subtype_rel: A ⊆B real: prop: top: Top cand: c∧ B uimplies: supposing a itermConstant: "const" req_int_terms: t1 ≡ t2 uiff: uiff(P;Q)
Lemmas referenced :  rleq-rmax rminus_wf less_than'_wf rsub_wf rabs_wf real_wf nat_plus_wf rleq-implies-rleq real_term_polynomial itermSubtract_wf itermVar_wf itermMinus_wf int-to-real_wf real_term_value_const_lemma real_term_value_sub_lemma real_term_value_var_lemma real_term_value_minus_lemma req-iff-rsub-is-0 rabs-as-rmax
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis sqequalRule productElimination independent_pairEquality lambdaEquality dependent_functionElimination voidElimination applyEquality setElimination rename minusEquality natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality voidEquality because_Cache independent_isectElimination computeAll int_eqEquality intEquality independent_pairFormation

Latex:
\mforall{}[x:\mBbbR{}].  ((-(|x|)  \mleq{}  x)  \mwedge{}  (x  \mleq{}  |x|))



Date html generated: 2017_10_03-AM-08_37_26
Last ObjectModification: 2017_07_28-AM-07_30_08

Theory : reals


Home Index