Nuprl Lemma : unique-limit

[x:ℕ ⟶ ℝ]. ∀[y1,y2:ℝ].  (y1 y2) supposing (lim n→∞.x[n] y2 and lim n→∞.x[n] y1)


Proof




Definitions occuring in Statement :  converges-to: lim n→∞.x[n] y req: y real: nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a converges-to: lim n→∞.x[n] y uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True prop: sq_exists: x:{A| B[x]} so_apply: x[s] nat: implies:  Q guard: {T} ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top rneq: x ≠ y iff: ⇐⇒ Q rev_implies:  Q sq_stable: SqStable(P) rleq: x ≤ y rnonneg: rnonneg(x) le: A ≤ B subtype_rel: A ⊆B so_lambda: λ2x.t[x] rev_uimplies: rev_uimplies(P;Q) rge: x ≥ y rsub: y
Lemmas referenced :  infinitesmal-difference mul_nat_plus less_than_wf sq_stable__rleq rabs_wf rsub_wf nat_wf imax_wf imax_nat nat_properties nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf le_wf rdiv_wf int-to-real_wf rless-int decidable__lt intformless_wf itermMultiply_wf int_formula_prop_less_lemma int_term_value_mul_lemma rless_wf imax_ub less_than'_wf nat_plus_wf req_witness converges-to_wf real_wf radd_wf rleq_wf rminus_wf rleq_weakening_equal rleq_functionality_wrt_implies r-triangle-inequality uiff_transitivity rleq_functionality req_weakening rabs_functionality req_inversion radd-assoc req_transitivity radd-ac radd_functionality radd-rminus-assoc radd_functionality_wrt_rleq rabs-difference-symmetry rmul_wf rleq-int-fractions rmul-identity1 rmul-distrib2 rmul_functionality radd-int rmul-int-rdiv
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution extract_by_obid isectElimination thin hypothesisEquality productElimination independent_isectElimination hypothesis dependent_functionElimination dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation imageMemberEquality baseClosed because_Cache setElimination rename applyEquality functionExtensionality lambdaFormation equalityTransitivity equalitySymmetry applyLambdaEquality unionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_functionElimination multiplyEquality inrFormation imageElimination inlFormation independent_pairEquality minusEquality axiomEquality functionEquality addEquality

Latex:
\mforall{}[x:\mBbbN{}  {}\mrightarrow{}  \mBbbR{}].  \mforall{}[y1,y2:\mBbbR{}].    (y1  =  y2)  supposing  (lim  n\mrightarrow{}\minfty{}.x[n]  =  y2  and  lim  n\mrightarrow{}\minfty{}.x[n]  =  y1)



Date html generated: 2017_10_03-AM-08_52_28
Last ObjectModification: 2017_07_28-AM-07_35_11

Theory : reals


Home Index